North Branch Water and Light Wellhead Protection Plan

Part 1:

Delineation of the Wellhead Protection Area (WHPA), Drinking Water Supply Management Area (DWSMA) and Assessments of Well and DWSMA Vulnerability

Prepared for: North Branch Water and Light

August, 2012

North Branch Water and Light Wellhead Protection Plan

Part I

Delineation of the Wellhead Protection Area (WHPA), Drinking Water Supply Management Area (DWSMA) and Assessments of Well and DWSMA Vulnerability

August 2012

I hereby certify that this plan, document, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Geologist under the laws of the state of Minnesota.

Signature:

John C. Shu John C. Greer

Date: August 7, 2012 Reg. No. 30347

Wellhead Protection Plan for North Branch Water and Light

Part I

Table of Contents

1.0		Introduction	1
2.0		Criteria for Wellhead Protection Area Delineation	2
	2.1	Time of Travel	
	2.2	Aquifer Transmissivity	
	2.3	Daily Volume of Water Pumped	
	2.4	Conceptual Hydrogeologic Model	
		2.4.1 Geologic History	
		2.4.2 Regional Bedrock Geology	
		2.4.3 Recharge and Discharge of Groundwater	
		2.4.4 Direction of Groundwater Flow	
	2.5	Model Description	5
	2.6	Groundwater Flow Field	
3.0		Delineation of the Wellhead Protection Area	8
	3.1	Porous Media Flow Evaluation	8
		3.1.1 Sensitivity Analysis	8
	3.2	Fracture Flow Evaluation	9
	3.3	Other Groundwater Withdrawal	9
4.0		Delineation of the Drinking Water Supply Management Areas	1
5.0		Well Vulnerability Assessment	2
6.0		Drinking Water Supply Management Area Vulnerability Assessment	3
7.0		Supporting Data Files	4
8.0		References	5
Tab	les		

Figures

Appendices

List of Tables

Table 1 Data Elements

Table 2 Annual and Projected Pumping Rates for Mounds View Wells

List of Figures

- Figure 1 Bedrock Geology
- Figure 2 Geologic Cross Section A-A'
- Figure 3 Geologic Cross Section B-B'
- Figure 4 Geologic Cross Section C-C'
- Figure 5 Well Capture Zones
- Figure 6 WHPA & DWSMA

List of Appendices

- Appendix A Well Construction Records
- Appendix B Aquifer Test Data and Analysis
- Appendix C MDH Well Vulnerability Assessments
- Appendix D Summary of Fracture Flow Capture Zone Calculations
- Appendix E Groundwater Model
- Appendix F L-Score Map
- Appendix G Groundwater Model Files and GIS Shapefiles

Wellhead protection areas (WHPAs) and a Drinking Water Supply Management Area (DWSMA) were delineated for North Branch Municipal Water and Light (NBWL). This report summarizes the delineation of WHPAs and the DWSMA for NBWL as required by the Minnesota Wellhead Protection Rules.

NBWL has six municipal water supply wells including Well 1 (unique number 217922), Well 2 (unique number 112244), Well 3 (unique number 522767), Well 4 (unique number 706844), Well 5 (unique number 749383), and Well 6 (unique number 593584). Wells 1, 2, and 6 pump water from the Middle Proterozoic sedimentary aquifer and the Mount Simon – Hinckley aquifer. Well 3 and Well 5 pump water from the Mount Simon–Hinckley aquifer. Well 4 pumps from a buried Quaternary sand and gravel aquifer. Well locations are shown on Figure 1 and well construction data are presented in Appendix A.

Data elements used in preparation of the report are presented in Table 1.

2.0 Criteria for Wellhead Protection Area Delineation

The following criteria were used to ensure accurate delineation of the WHPA.

2.1 Time of Travel

A minimum ten-year time of travel criteria must be used to determine a WHPA (MN Rule 4720.5510) so there is sufficient reaction time to remediate potential health impacts in the event of contamination of the aquifer. A time of travel of ten years was considered in this study. As required by the Wellhead Protection Rules, the one-year time of travel was also determined for each well addressed in this study.

2.2 Aquifer Transmissivity

Per discussions with Minnesota Department of Health (MDH) staff during the Pre-Delineation Meeting (MDH, 2011a), aquifer transmissivity and hydraulic conductivity were determined as follows: 1) For the Mt. Simon – Hinckley aquifer a pumping test at NBWL Well 5 was used (Appendix B). Based on this test, the transmissivity was estimated to be $5,370 \text{ ft}^2/\text{day}$; using an aquifer thickness of 150 feet results in an estimated hydraulic conductivity of 35.8 ft/day (10.9 m/day). 2) The aquifer transmissivity of the Middle Proterozoic sedimentary aquifer was determined using a specific capacity test for NBWL Well 2 (Appendix B). Using the TGuess Method (Bradbury and Rothschild, 1985), the transmissivity of the Middle Proterozoic sedimentary aquifer is estimated to be 441 ft²/day and the hydraulic conductivity is estimated to be 4.4 ft/day (1.3 m/day). 3) The aquifer transmissivity for the Quaternary sand and gravel aquifer was determined using a specific capacity test for NBWL Well 4. Using the Tguess Method the transmissivity of the Quaternary aquifer is estimated to be 1,728 ft²/day, and the hydraulic conductivity is estimated to be 29 ft/day (8.8 m/day). This falls within the expected range based on regional data from the Minnesota Geological Survey and Metropolitan Council (Tipping et al., 2010) which indicates that the hydraulic conductivity of Quaternary aquifers in the North Branch area range from 4.6 ft/day to 221.4 ft/day with a geometric mean hydraulic conductivity of 20.3 ft/day (n=89).

2.3 Daily Volume of Water Pumped

Pumping data for NBWL for the period 2006 through 2010 is summarized in Table 2. The largest annual withdrawal for 2006-2010 was 239,353,000 gallons in 2007. The projected total withdrawal for 2015 is estimated to be 292,700,000 gallons. Projected pumping rates for 2015 were estimated for each well based on the percentage of the total volume that each well pumped from 2006-2010.

The pumping rate for Well 6 was adjusted based on an estimated total use of 21 Mgal/yr (17Mgal/yr for irrigation and 4 Mgal/yr for municipal peak demand) (Bonin, 2011). The pumping rates used for W in the delineation of the WHPA were the maximum of either the projected 2015 pumping rate, or those reported for 2006-2010. Table 2 summarizes the historical and projected distribution of the annual withdrawal among the NBWL municipal wells and the pumping rates used for delineation of the WHPA.

2.4 Conceptual Hydrogeologic Model

The conceptual hydrogeologic model is described in Barr (2005) and is repeated here with slight modifications for completeness.

2.4.1 Geologic History

North Branch is located in the northern part of a geologic feature called the *Hollandale Embayment* – a large bay in an ancient shallow sea were sediment was deposited as the seas waxed and waned to form what is now most of the major bedrock geologic units in eastern Minnesota. Before the deposition of what is now the Mt. Simon Sandstone, there was structural uplifting of Precambrian rocks that formed an uplifted block (called a "horst") that trends north-south. The western edge of this horst corresponds approximately with Interstate 35. Subsequent tectonic activities formed a structural basin (the Twin Cities basin), centered under what is now Minneapolis and St. Paul. Bedrock units generally dip southward toward the center of the Twin Cities basin. There may have been some reactivation of the Precambrian faults after deposition of younger rocks (Morey, 1972).

During the Quaternary (about the last two-million years), glacial advances eroded away higher relief bedrock units and deposited a mixture of glacially derived tills and outwash over the landscape. The combination of depositional history, structural faulting, and glaciation has resulted in the current geologic setting. Major bedrock aquifer units, such as the Prairie du Chien-Jordan aquifer, are not present in the North Branch area due to these processes. The Wonewoc Sandstone-Tunnel City Group aquifer is present to the west of North Branch but underneath North Branch (where the underlying horst feature is present), the uppermost bedrock unit is primarily the Mt. Simon Sandstone (and the upper portion of this unit has also been eroded).

2.4.2 Regional Bedrock Geology

The bedrock geology as interpreted by Runkel and Boerboom (2010) is shown on Figure 1. Locations of three geologic cross sections through the study area are also shown on Figure 1. Geologic cross

section A-A' is a west to east cross section (Figure 2); cross section B-B' (Figure 3) and C-C' (Figure 4) are north to south cross sections.

The hydrostratigraphic units of importance for this study are described in more detail below.

Chengwatana volcanics

The Chengwantana volcanics consist of deeply dipping sequences of interlayered ophitic to weakly porphyritic basalt flows and coarse interflow conglomerate units. The western margin of this unit is juxtaposed against the Mt Simon-Hinckley sandstone along the Douglas Fault in the vicinity of North Branch (Runkel and Boerboom, 2010).

Mesoproterozoic Sedimentary Rocks

Mesoproterozoic sedimentary rocks consist of feldspathic sandstone, reddish-brown mudstone and siltstone, and minor shale units of the Keweenawan Supergroup (Runkel and Boerboom, 2010). Due to a limited number of borings and complexities associated with faulting in the area these units cannot be assigned to individual formations but are likely related to the Solar Church and/or Fond du Lac Formations. Of importance to this study is the informally defined St. Croix Horst Sandstone. This sandstone is present below most of North Branch with bedding that dips 50° to 70° from horizontal and is often cut by numerous thin, white veins of calcite (Boerboom, 2010).

Mt. Simon Sandstone

The Cambrian-aged Mt. Simon Sandstone consists of multiple beds of moderately-sorted to well-sorted quartz sandstone intermixed with thin beds of feldspathic sandstone, siltstone, and shale (Mossler and Tipping, 2000). The formation can be up to 250 feet thick in Chisago County (Runkel and Boerboom, 2010). East of the Douglas Fault the Mt. Simon Sandstone is often the uppermost bedrock. West of the Douglas Fault the Mt. Simon Sandstone is overlain by the Eau Claire Formation (a confining unit) and the Wonewoc Sandstone and Tunnel City Group.

Eau Claire Formation

The Cambrian-aged Eau Claire Formation is a siltstone, very fine feldspathic sandstone, and greenish-gray shale. Some sandstone beds are glauconitic. (Mossler and Tipping, 2000). The Eau Claire Formation gradually coarsens to the north in Chisago County and is dominantly a very fine- to fine-grained sandstone in the northern one-half of the county (Runkel and Boerboom, 2010).

Wonewoc Sandstone

The Cambrian-aged Wonewoc Sandstone is medium to very coarse-grained, quartzose sandstone and very-fine to fine-grained feldspathic sandstone, with scattered thin beds of shale (Mossler and Tipping, 2000).

Tunnel City Group

The Cambrian-aged Tunnel City Group is divided into two formations: the Mazomanie Formation and the Lone Rock Formation. The Mazomanie Formation is mostly a medium-grained friable, quartz sandstone. The Lone Rock Formation underlies the Mazomanie Formation and consists of fine grained glauconitic, feldspathic sandstone and siltstone (Runkel and Boerboom, 2010).

2.4.3 Recharge and Discharge of Groundwater

The primary mechanisms of recharge to the aquifer system in the region is infiltrating precipitation that moves below the root zone of plants and migrates downward by gravity to the water table. Recharge rates in east-central Minnesota are typically in the range of less than 1 inch per year to over 12 inches per year. A secondary source of recharge is seepage through the bottoms of lakes, wetlands, and some streams. Water supplying individual aquifers which NBWL wells tap is controlled by leakage from overlying confining units; either Quaternary clays, or the Eau Claire Formation where present.

Most groundwater flows southeast and east toward the St. Croix River, which is a regional discharge zone. Secondary discharge zones include smaller streams, some lakes and wetlands, evapotranspiration from plants, and wells.

2.4.4 Direction of Groundwater Flow

Regional groundwater flow for all bedrock aquifers is to the east and south, toward the St. Croix River. Differing directions of flow can be expected for the shallow aquifer (surficial deposits) near lakes and streams. Near high capacity wells, groundwater flow is typically toward the wells.

2.5 Model Description

To accurately delineate the WHPA, it is necessary to assess how nearby wells, rivers, lakes, and variations in geologic conditions affect groundwater flow directions and velocities in the aquifer. The finite difference code MODFLOW-96 (McDonald and Harbaugh, 1988; Harbaugh and McDonald, 1996) was used for this study to simulate groundwater flow in the hydrostratigraphic

units from the Quaternary aquifer down to the Mesoproterozoic sedimentary rocks. MODFLOW is public domain software that is available at no cost from the United States Geological Survey. The pre- and post-processor Groundwater Vistas (version 6) (Environmental Simulations, Inc., 2011) was used to create the data files and evaluate the results.

The base finite difference model used in this study is the groundwater flow model developed for evaluation of future well locations for NBWL (Barr, 2005). Full description of this model is presented in Appendix E. A brief summary and discussion of changes made to the model for this project are presented below.

The groundwater flow model is a 5 layer model and includes all major hydrostratigraphic units in the North Branch Area. The model layers generally correspond to the following: Layer 1 – Quaternary sediments; Layer 2 – Tunnel City Group and Wonewoc Sandstone; Layer 3 – Eau Claire Formation; Layer 4 – Mt. Simon Sandstone; and Layer 5 – Proterozoic Sediments. In the North Branch area, where upper bedrock units are not present, the layers are represented as the Quaternary sediments. The model takes into account regional flow boundaries. The major flow boundary near North Branch is the St Croix River. To the west the model extends to the approximate extent of the Mt. Simon-Hinckley aquifer. Smaller streams and area lakes are also included in the model using constant head cells and the River Package of MODFLOW. In addition, high capacity pumping wells from the State Water Use Database System (SWUDS) are included in the model.

The model was modified in the vicinity of North Branch to better represent the local conditions. Changes made to the model for use in delineating the NBWL WHPAs included:

- Refining the model grid around NBWL municipal wells to a cell size of 10m x 10m;
- Modify the hydraulic conductivity zones and layer elevations to match recently mapped geology in the North Branch area (Boerboom, 2010; Runkel and Boerboom, 2010)
- Adjust the location of the faults in the North Branch area based on recently mapped geology (Runkel and Boerboom, 2010).
- Hydraulic conductivity values of the Mt. Simon-Hinckley aquifer, and Proterozic sediments adjusted based on values presented in Section 2.2.
- Incorporate a new hydraulic conductivity zone in model layer 5 to represent the Proterozoic sediments in an area of approximately 4 km² around NBWL Wells 1 and 2.
- Incorporate a new hydraulic conductivity zone to represent the Chengwantana volcanics.

- Incorporate a new hydraulic conductivity zone to represent the buried sand and gravel aquifer supplying Well 4. Review of Quaternary stratigraphy data indicated that this unit is consistent with unit qsx as mapped by Meyer (2010).
- Layer thicknesses to the west of North Branch in the vicinity of Isanti were adjusted based on updated information.

After these revisions were made to the model a check on model calibration to hydraulic heads was made. Calibration residuals for hydraulic head are presented in Appendix E.

Sensitivity of the model parameters was also evaluated and results are presented in Appendix E.

MODFLOW files for the calibrated model are included in Appendix G.

2.6 Groundwater Flow Field

Groundwater flow in the glacial aquifer and bedrock aquifers in the vicinity of North Branch is to the east toward the St. Croix River. The ambient direction of groundwater flow was estimated based on static water level data from well records obtained from the County Well Index. This flow direction is consistent with the flow direction determined using the groundwater flow model in this study.

Delineation of the WHPA for the NBWL wells involved the evaluation of both porous media and fracture flow. First, the capture zones for each well were delineated based on porous media flow and then, because of extensive faulting in the area, the capture zones were also delineated according to the procedures described in the MDH guidance for WHPA delineations in fractured and solution-weathered bedrock (MDH, 2005). A composite WHPA was defined by combining the capture zones delineated using these two methods.

3.1 Porous Media Flow Evaluation

The groundwater flow model discussed above was used to simulate the groundwater flow field in the vicinity of North Branch. The WHPA for each of the NBWL wells was delineated using the software program MODPATH (Pollock, 1994) with the modeled groundwater flow field. A minimum of 300 particles were distributed vertically surrounding the open interval of each well. These particles were tracked backwards in time for both 1 and 10 years. When viewed in plan view, the areas encompassed by the particle traces were then outlined as the one- and ten-year porous medium time of travel zones for each well (Figure 5).

Porosity values used for the porous media evaluation were as follows: Quaternary sediments = 0.2, Wonewoc Sandstone and Tunnel City Group = 0.253, Eau Claire Formation = 0.1, Mt. Simon-Hinckley Sandstone = 0.233, Proterozic Sediments = 0.1 Proterozoic basalt = 0.01 (Norvitch et al., 1974, Schwartz and Zhang, 2003)

3.1.1 Sensitivity Analysis

A sensitivity analysis was performed for the model using the auto sensitivity option in Groundwater Vistas. The model was most sensitive to the horizontal hydraulic conductivity (K_x) of the Quaternary sediments (Zone 1 and Zone 8), and the horizontal and vertical hydraulic conductivities of the Tunnel City Group/Wonewoc Sandstone (Zone 3). Output from the sensitivity analysis is presented in Appendix E.

Multiple particle tracking simulations were conducted to account for uncertainty in the groundwater flow model. For these simulations, the hydraulic conductivity values for the most sensitive hydraulic conductivity zones (1, 3, and 8) were adjusted. The calibrated horizontal hydraulic conductivities of Zone 1 and Zone 8 (Quaternary sediments) are 24 m/day and 22 m/day, respectively. The hydraulic conductivities of these zones were adjusted to 1 m/day and 50 m/day based on the expected range in

values for glacial sediments in the area. The calibrated horizontal and vertical hydraulic conductivities of zone 3 (Tunnel City Group/Wonewoc Sandstone) are 12.8 m/day and 0.02 m/day, respectively. The horizontal and vertical hydraulic conductivities of Zone 5 were adjusted plus and minus 50%. Particle traces from all simulations were combined to define a composite porous media flow capture zone as shown on Figure 5.

3.2 Fracture Flow Evaluation

The bedrock in the North Branch area is extensively faulted. Between NBWL Well 5 and Well 4 is the Douglas Fault zone. Across the Douglas Fault zone up to 200 feet of vertical displacement has occurred (Runkel and Boerboom, 2010). East of NBWL Well 6 is another unnamed fault where up to 100 feet of vertical displacement has occurred (Runkel and Boerboom, 2010). Between these mapped fault features it is likely that additional smaller faults or fault zones may be present but are difficult to define based on limited boring data. Because of the extensive faulting in the area, fracture flow capture zones were delineated for all wells. Delineation technique 1 from MDH (2005) was used for NBWL Wells 1 and 2. Delineation technique 2 (MDH, 2005) was used for NBWL Wells 3, 5, and 6. Well 4 is open to a Quaternary sand and gravel aquifer. However, as shown on Figure 2 this buried Quaternary aquifer is likely connected to the bedrock aquifer and may receive a significant amount of water from the Mt. Simon Sandstone which is subsequently faulted in the Douglas Fault zone. Also, the porous media flow evaluation indicated that particle traces originating from Well 4 extend into the Mt. Simon Sandstone along the fault zone. Because of this connection, delineation technique 4 (MDH, 2005) was used.

The fixed-radius fracture-flow capture zones defined for Well 3, Well 4, Well 5 and Well 6 were extended upgradient based on gradients from the groundwater flow model (Figure 5). A five year groundwater time of travel was used for the fixed radius capture zone and an additional five year time of travel was used for the upgradient extensions per direction from MDH (MDH, 2011b). Fixed radius capture zones were also extended along the orientation of faults in the area one mile from the well unless a geologic boundary such as a mapped fault was encountered in which case the extension was terminated at the geologic boundary. A summary of calculations used in the delineation of fracture flow capture zones is presented in Appendix D.

3.3 Other Groundwater Withdrawal

Potential interference from other high capacity wells in the area was incorporated by including wells from Minnesota DNR SWUDS database in the groundwater flow model. The base model (Barr,

2005) used average pumping rates for 2004 for these other high capacity wells. For wells within two miles of North Branch well pumping rates were updated to use the average from 2006-2010. For the fracture flow analysis, potential capture zones from other high capacity wells would not intersect the capture zones for the NBWL wells so they were not included in the delineation of fracture flow capture zones. Pumping from wells other than the NBWL wells was not adjusted to address future use.

4.0 Delineation of the Drinking Water Supply Management Areas

The NBWL DWSMA encompasses the WHPA with boundaries that correspond to geographically identifiable features (e.g., parcel boundaries, quarter section lines). Parcel boundaries where used as much as possible in the delineation of the DWSMA. Quarter section lines where used in limited areas where large parcels are intersected by quarter section lines. The DWSMA extends into North Branch Township and Isanti County to the west. The DWSMA that encompasses the 10-year groundwater time of travel zones is shown on Figure 6.

MDH evaluated the vulnerability of NBWL municipal wells to contamination from contaminants released at the surface. The evaluation parameters include geology, well construction, pumping rate, and water quality. All NBWL wells are classified as being not vulnerable. Copies of the MDH well vulnerability scoring sheet for the NBWL wells are presented in Appendix C.

6.0 Drinking Water Supply Management Area Vulnerability Assessment

The vulnerability of the bedrock aquifers supplying NBWL Wells 1, 2, 3, 5, and 6 and the buried Quaternary sand and gravel aquifer supplying NBWL Well 4 were assessed. The vulnerability of the DWSMA associated with the NBWL wells was evaluated using geologic logs for wells located within and surrounding the DWSMA along with previous mapped data from the Minnesota Geological Survey.

Geologic logs listed in the Minnesota Geological Survey (MGS) County Well Index for wells in the vicinity of the DWSMA were reviewed and "L scores" based on the thickness of low permeability units at each well location were assigned to each well. (See MnDNR (1991) for a discussion of how to determine L scores). Aquifer vulnerability was further assessed using the geologic cross sections, bedrock geology map (Runkel and Boerboom, 2010), surficial geology (Meyer, 2010a), and the Quaternary stratigraphy model of Meyer (2010b). These data were used to construct three cross sections (Figure 2 through Figure 4). Locations of these cross sections are shown on Figure 1. The low levels of tritium (below the detection limit of 0.8 tritium units) in Well 3, Well 4, and Well 5 were also considered in assessing aquifer vulnerability.

The entire DWSMA is assigned a vulnerability rating of "low" indicating that water moving vertically from the surface will have several decades to a century to reach the aquifer(s). All NBWL wells have a geologic sensitivity rating of low to very-low due to thick confining units of glacial clay (Appendix E).

The groundwater model can be reviewed using MODFLOW (Harbaugh and McDonald, 1996). MODPATH pathline files can be reviewed using MODPATH Version 3 (Pollock, 1994)

All coordinates in the modeling files are based on UTM NAD 83 Zone 15 N datum. Elevations are in meters above mean sea level (m MSL). Time units are days. Length units are meters.

GIS files are included in Appendix G. Descriptions are self-explanatory and some additional information is available in the associated metadata. Shapefiles files are in UTM NAD 83 Zone 15 N datum.

- Barr Engineering Company (Barr), 2005. Groundwater Modeling Evaluation of Future Wells for the North Branch Water and Light Commission. Prepared for WSB and Associated, Inc. November 2005.
- Boerboom, T.J. 2010. Precambrian Bedrock Geology. , plate 5 in Geologic Atlas of Chisago County, Minnesota, County Atlas Series Atlas C-22, Part A, University of Minnesota, St Paul.
- Bonin, B.J. 2011. Email from B.J. Bonin of WSB and Associates, Inc. to John Greer of Barr Engineering regarding projected use for North Branch Water and Light Well 6, received December 2, 2011.
- Bradbury, K.B., and E.R. Rothschild. 1985. A computerized technique for estimating the hydraulic conductivity of aquifer from specific capacity data. *Ground Water* v. 23, no. 2, pp. 240-246.
- Environmental Simulations, Inc., 2011. Guide to using Groundwater Vistas, Version 6, Environmental Simulations Inc.
- Harbaugh, A.W., and McDonald, M.G. 1996. User's documentation for MODFLOW-96, an update to the U.S. Geological Survey Modular Finite Difference Ground-Water Flow Model: U.S. Geological Survey Open-File Report 96-485. 56p.
- McDonald, M.G., and A.W. Harbaugh. 1988. A Modular Three-Dimensional Finite-Difference Groundwater Flow Model, U.S. Geological Survey Techniques of Water Resource Investigations, TWRI 6-A1. 575 p.
- Meyer, G.N., 2010a. Surficial Geology., plate 3 in Geologic Atlas of Chisago County, Minnesota, County Atlas Series Atlas C-22, Part A, University of Minnesota, St Paul.
- Meyer, G.N., 2010b. Quaternary Stratigraphy., plate 4 in Geologic Atlas of Chisago County, Minnesota, County Atlas Series Atlas C-22, Part A, University of Minnesota, St Paul.
- Minnesota Department of Health (MDH). 2011a. Personal communication: Pre-delineation Meeting, held on June 16, 2011 at Barr Engineering Company, Minneapolis MN.
- Minnesota Department of Health (MDH). 2011b. Email summarizing time of travel for fracture flow analysis. From Amal Djerrari of MDH to John Greer of Barr Engineering Company. Dated August 19th, 2011.
- Minnesota Department of Health (MDH). 2005. Draft Guidance for Delineating Wellhead Protection Areas in Fractured and Solution-Weathered Bedrock in Minnesota. 81pp.
- Minnesota Department of Natural Resources (MnDNR), Division of Waters. 1991. *Criteria and Guidelines for Assessing Geologic Sensitivity of Ground Water Resources in Minnesota*. Prepared for the Legislative Commission on Minnesota Resources. 122pp.
- Mossler, J.H. and R.G. Tipping. 2000. Bedrock geology and structure of the seven-county Twin Cities metropolitan area, Minnesota. Miscellaneous Map Series M-104, Minnesota Geological Survey.

- Norvitch, R.F., Ross T.G., and Brietkrietz, A., 1974. Water resources outlook for the Minneapolis-St. Paul metropolitan area. Metropolitan Council of the Twin Cities area, 219p.
- Pollock, D.W. 1994. User's guide for MODPATH/MODPATH-PLOT, Version 3: a particle tracking post-processing package for MODFLOW, the U.S. Geological Survey finite difference ground-water flow model. U.S. Geological Survey Open-File Report 94-464.
- Runkel, A.C.and Boerboom, T.J. 2010. Bedrock Geology, plate 2 in Geologic Atlas of Chisago County, Minnesota, County Atlas Series Atlas C-22, Part A, University of Minnesota, St Paul.
- Schwartz, F.W. and Zhang, H., 2003. *Fundamentals of Ground Water*. John Wiley and Sons, Inc. New York, New York.
- Tipping, R.G., Runkel, A.C., and Gonzalez, C.M. 2010. Geologic Investigation for Portions of the Twin Cities Metropolitan Area: I Quaternary/Bedrock Hydraulic Conductivity, II/ Groundwater Chemistry. Metropolitan Council Water Supply master Plan Development, November 24, 2010

Tables

Table 1Assessment of Data Elements

	I		nt and Fu				
Data Element	Use of the Well s	Delineation Criteria	Quality and Quantity of Well Water	Land and Groundwater Use in DWSMA	Data Source		
Precipitation							
Geology							
Maps and geologic descriptions	М	Н	Н	Н	MGS, CWI		
Subsurface data	Μ	Н	Н	Н	MGS, MDH, CWI		
Borehole geophysics	Μ	Н	Н	Н	MGS		
Surface geophysics	L	L	L	L	Not Available		
Maps and soil descriptions							
Eroding lands							
Water Resources							
Watershed units							
List of public waters							
Shoreland classifications							
Wetlands map							
Floodplain map							
Land Use							
Parcel boundaries map	L	Н	L	L	WSB and Associates		
Political boundaries map	L	L	L	L	MNGEO		
PLS map	L	Н	L	L	DNR		
Land use map and inventory							
Comprehensive land use map							
Zoning map							
Public Utility Services							
Transportation routes and corridors	L	М	L	L	MNDOT		
Storm/sanitary sewers and PWS system map							
Oil and gas pipelines map							
Public drainage systems map/list							
Records of well construction, maintenance, and use	Н	Н	Н	Н	North Branch Water and Light, CWI, MDH files		

Definitions Used for Assessing Data Elements:

High (H) -	the data element has a direct impact
Moderate (M) -	the data element has an indirect or marginal impact
Low (L) -	the data element has little if any impact
Shaded -	the data element was not required by MDH for preparing the WHP plan

CWI – Minnesota County Well Index DNR – Minnesota Department of Natural Resource MNGEO - Minnesota Geospatial Information Office MDH – Minnesota Department of Health

MNDOT - Minnesota Department of Transportation

MPCA – Minnesota Pollution Control Agency NRCS – Natural Resources Conservation Service SSURGO – Soil Survey Geographic Database USGS – United State Geological Survey

Table 1
Assessment of Data Elements (Continued)

	I		nt and Fu plication			
Data Element	Use of the Well s	Delineation Criteria	Quality and Quantity of Well Water	Land and Groundwater Use in DWSMA	Data Source	
Surface Water Quantity				L		
Stream flow data						
Ordinary high water mark data						
Permitted withdrawals						
Protected levels/flows						
Water use conflicts	Μ	Μ	L	М	DNR	
Groundwater Quantity						
Permitted withdrawals	Η	Н	Н	Н	DNR	
Groundwater use conflicts	L	L	L	L	DNR	
Water levels	Η	Н	Н	Н	CWI, MDH	
Surface Water Quality						
Stream and lake water quality management classification						
Monitoring data summary						
Groundwater Quality						
Monitoring data	Η	Н	Н	Н	MDH	
Isotopic data	Н	Н	Н	Н	MDH	
Tracer studies	Н	Н	Н	Н	Not Available	
Contamination site data	Μ	Μ	М	М	MPCA, MDH	
Property audit data from contamination sites						
MPCA and MDA spills/release reports	М	М	М	М	MDH, MPCA	

Definitions Used for Assessing Data Elements:

High (H) -	the data element has a direct impact
Moderate (M) -	the data element has an indirect or marginal impact
Low (L) -	the data element has little if any impact
Shaded -	the data element was not required by MDH for preparing the WHP plan

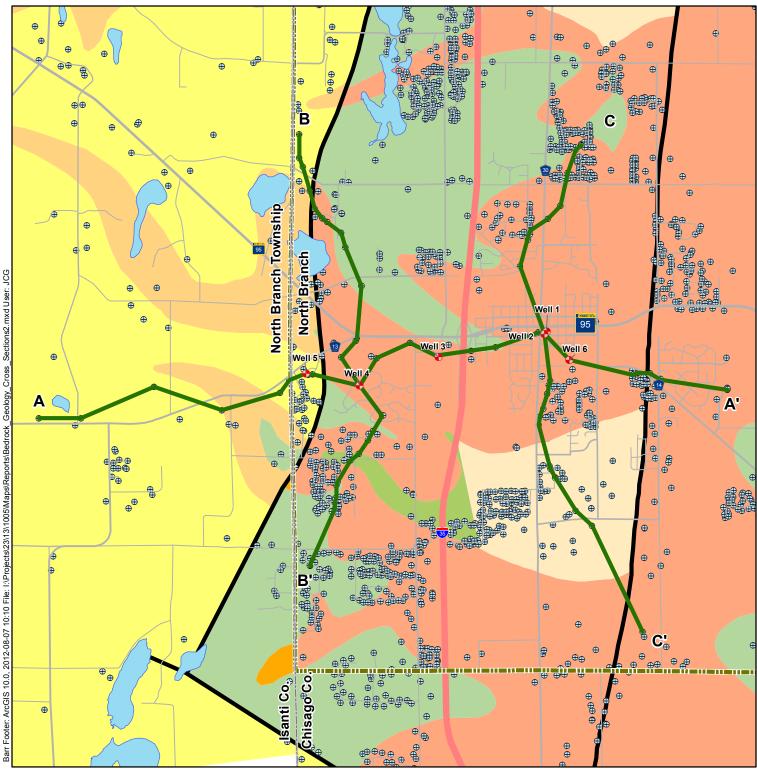
CWI - Minnesota County Well Index

DNR – Minnesota Department of Natural Resource MNGEO - Minnesota Geospatial Information Office MDH – Minnesota Department of Health MNDOT – Minnesota Department of Transportation MPCA – Minnesota Pollution Control Agency NRCS – Natural Resources Conservation Service SSURGO – Soil Survey Geographic Database USGS – United State Geological Survey

Table 2Annual and Projected Pumping Rates for North Branch Wells

		Total Annual Withdrawal (gal/yr)						
Unique Number	Well Name	2006	2007	2008	2009	2010		
217922 1		159,891,000	158,063,000	91,027,000	3,942,000	209,000		
112244	2	36,396,000	50,106,000	12,814,000	350,000	0		
522767	3	5,872,000	3,352,000	65,103,000	129,316,000	124,964,000		
706844	4	28,112,000	27,832,000	43,557,000	81,604,000	74,783,000		
749383	5	0	0	0	13,254,000	806,000		
593584 6		0	0	0	0	15,390		
	Totals	230,271,000	239,353,000	212,501,000	228,466,000	200,777,390		

Source: MN DNR SWUDS Database


	Percentage of Annual Withdrawal									
Unique Number	Well Name	2006	2007	2008	2009	2010	Average Annual % of Withdrawal			
217922	1	69.4%	66.0%	42.8%	1.7%	0.1%	36.0%			
112244	2	15.8%	20.9%	6.0%	0.2%	0.0%	8.6%			
522767	3	2.6%	1.4%	30.6%	56.6%	62.2%	30.7%			
706844	4	12.2%	11.6%	20.5%	35.7%	37.2%	23.5%			
749383	5	0.0%	0.0%	0.0%	5.8%	0.4%	1.2%			
593584	6	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%			

		Projec	ted Water Use	e (2015)	Maximum Total Pumping for Model Input ²			
Unique Number	Well Name	Total ¹ (gal/yr)	% of Total Projected Water Use Well ¹	Projected Well Pumpage Based on % (gal/yr)	gal/yr	gal/day	m ³ /day	
217922	1		36.0%	105,372,000		438,058	1,658	
112244	2		8.6%	25,172,200	50,106,000	137,277	520	
522767	3		30.7%	89,858,900	129,316,000	354,290	1,341	
706844	4		23.5%	68,784,500	81,604,000	223,573	846	
749383	5		1.2%	3,512,400	13,254,000	36,312	137	
593584	6		0.0%	0	21,000,000	57,534	218	
	Totals	292,700,000		292,700,000	455,171,000	1,247,044	4,720	

¹ Percentages for Wells 1 through 6 are based the average annual % of annual withdrawal for the period 2005 thorugh 20009.

² Well 6 rate of 21 mg/yr represents sum of estimated pumping for irrigation (17 mg/yr) and municipal peak demand (4 mg/yr) that was provided by WSB & Associates

Figures

Bedrock Geology CAMBRIAN

- Tunnel City Group Wonewoc Sandstone
- Eau Claire Formation
- Mt. Simon Sandstone

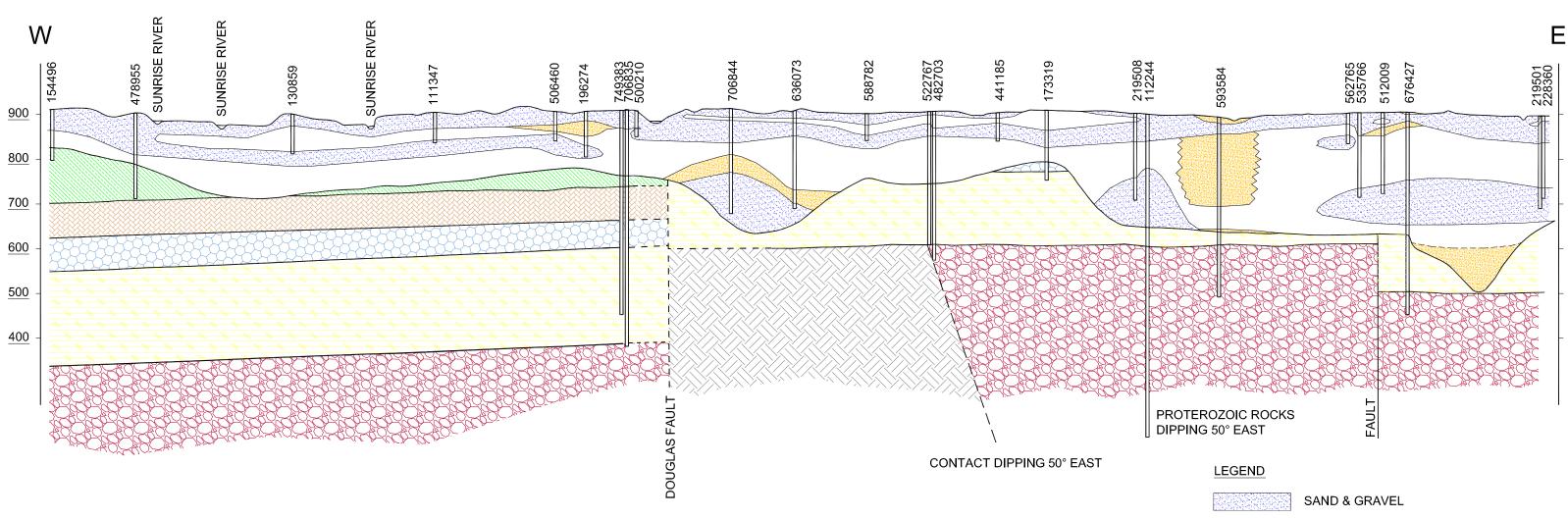
MESOPROTEROZOIC

Sandstone, Siltstone, Shale (St. Croix Horst Sandstone)

Chengwatana Volcanic Group

- Geologic Cross Section
- North Branch Water & Light Well
- ----- County Boundaries Line.lyr
- Muncipal Boundary

n


- Water Body
- Well County Well Index

BEDROCK GEOLOGY WHPP Part 1 North Branch Municipal Water and Light Chisago County, MN

NORTH BRANCH, MN

Α

Douglas Fault shown as a single fault offset for simplicity. Data are not sufficient to know if the offset is from a single fault or a series of faults with less displacement

HORIZONTAL SCALE

1" = 600'

VERTICAL SCALE

1" = 200 FT.

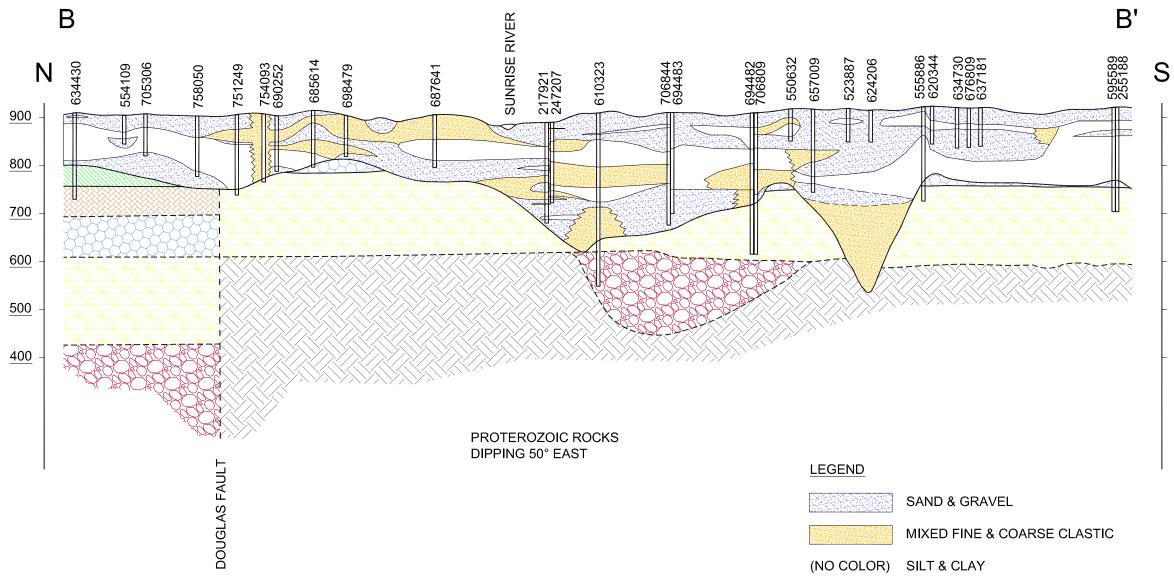

	SAND & GRAVEL
	MIXED FINE & COARSE CLASTIC
(NO COLOR)	SILT & CLAY
	ST. LAWRENCE
	TUNNEL CITY
	WONEWOC
	EAU CLAIRE
	MT. SIMON
BBBBBB	PROTEROZOIC SEDS
	PROTEROZOIC BASALT

Figure 2

Α'

GEOLOGIC CROSS SECTION A-A' WHPP Part 1 North Branch Municipal Water and Light Chisago County, MN

NORTH BRANCH, MN

HORIZONTAL SCALE

VERTICAL SCALE

1" = 200 FT.

1" = 600'

Douglas Fault shown as a single fault offset for simplicity. Data are not sufficient to know if the offset is from a single fault or a series of faults with less displacement

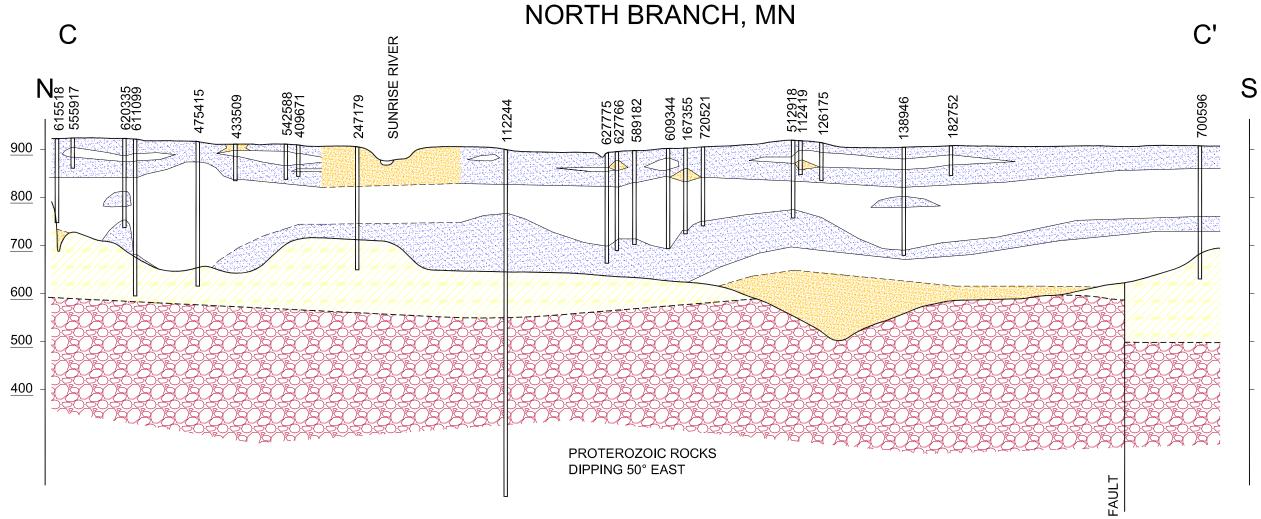
PROTEROZOIC SEDS

ST. LAWRENCE

TUNNEL CITY

WONEWOC

EAU CLAIRE


MT. SIMON

4004004

PROTEROZOIC BASALT

GEOLOGIC CROSS SECTION B-B' WHPP Part 1 North Branch Municipal Water and Light Chisago County, MN

Figure 3

LEGEND

	SAND & GRAV
	MIXED FINE 8
(NO COLOR)	SILT & CLAY
	ST. LAWRENG
	TUNNEL CITY
	WONEWOC
	EAU CLAIRE
	MT. SIMON
BBBBBB	PROTEROZO
	PROTEROZO

HORIZONTAL SCALE

1" = 600'

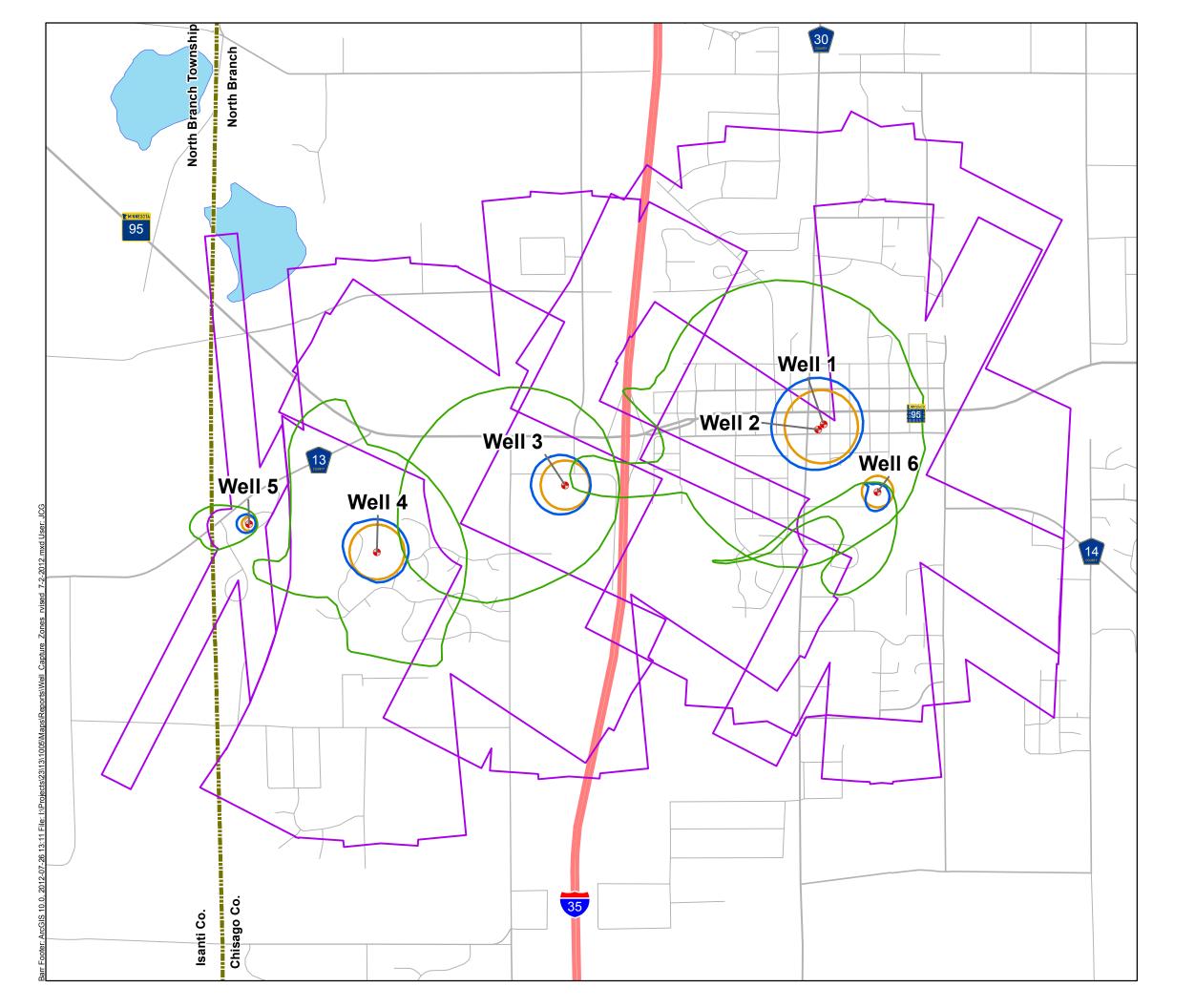
VERTICAL SCALE

1" = 200 FT.

RAVEL

E & COARSE CLASTIC

INCE


ITY

ZOIC SEDS

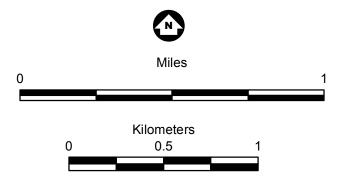
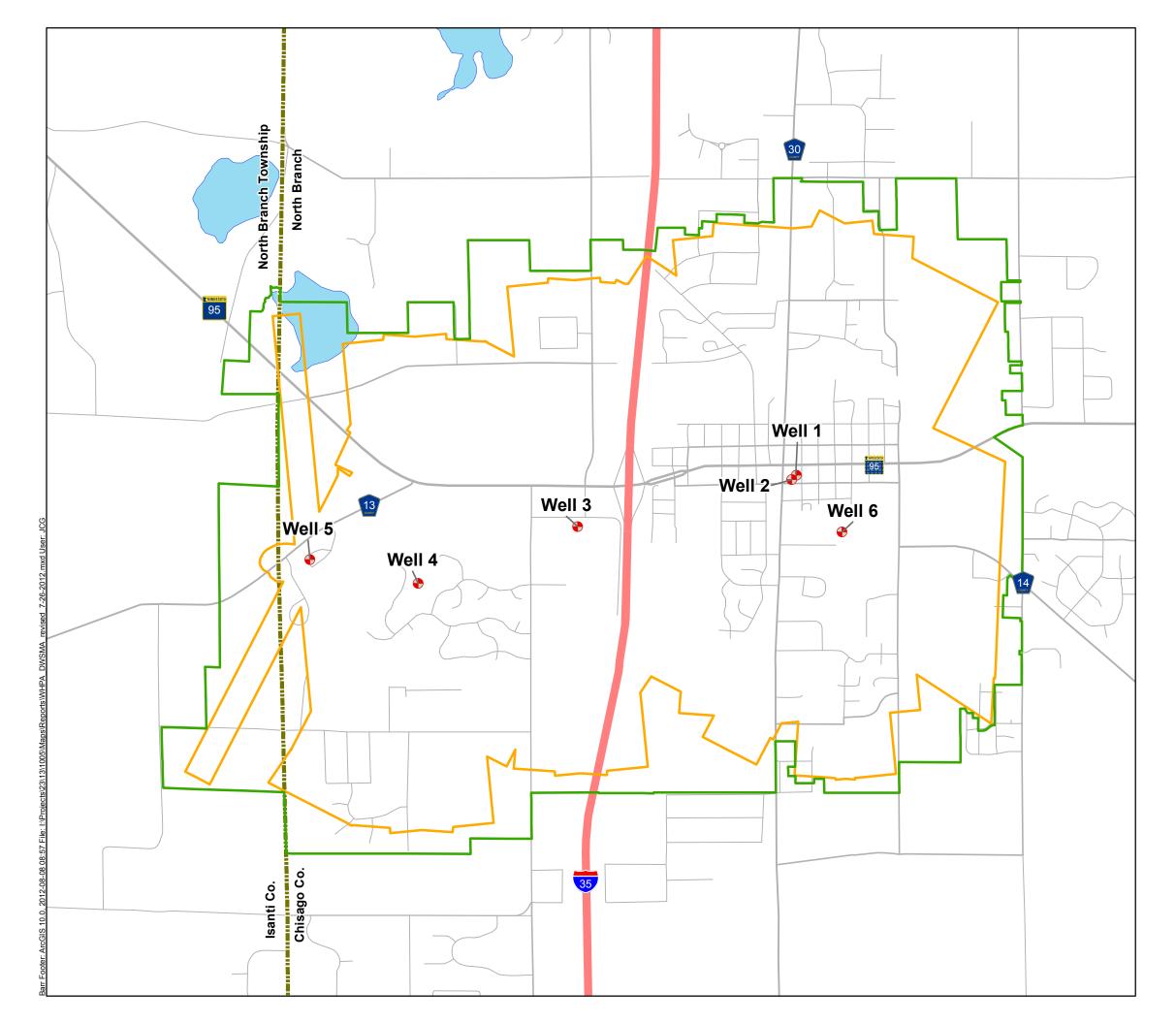

ZOIC BASALT

Figure 4

GEOLOGIC CROSS SECTION C-C' WHPP Part 1 North Branch Municipal Water and Light Chisago County, MN



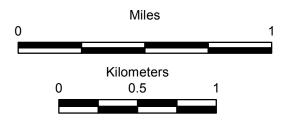

WELL CAPTURE ZONES WHPP Part 1 North Branch Municipal Water and Light Chisago County, MN

Figure 6

WHPA & DWSMA WHPP Part 1 North Branch Municipal Water and Light Chisago County, MN

Appendices

Appendix A

Well Construction Records

Unique Well Number	County Chisago	· · · · · · · · · · · · · · · · · · ·	MIN	INESOT	DEPARTMENT OF H	EALTH	Entry Dat	e 1988/04/07
217922	1	uad North Branch			ID BORING REC	ORD	Update D Received	ate 2009/07/30
Well Name NORTH B					Well Depth	Depth Com	pleted D:	ate Well Completed
Township Range Di 35 21 W	21 BBCDBA	Field Located Elevation		3 00 ft.	762.00 ft		0 ft	1947/03/13
Well Address	NORTH BRANC		030.	00 11.	Drilling Method	Cable Tool		
Hon Address	NOTHIDDNIC	/1 + 1			Drilling Fluid		Well Hydrofractur	
NORTH BRANCH	MN	550 56	C	Changed	Strang Lield		From	ft. to
Contact Address	CITY OF NORT	H BRANCH			Use Community	Supply		
NORTH BRANCH	MN	55056			Casing Type Steel (Diameter 12 12.00 in. from 0.00 1	Dep	ve Shoe? YES 11th 263 Ibs.ft	NO Hole Diameter (in.)
Description	Color	Hardnapp	From	To (#)				
SAND		Hardness	0	To (ft.)				
CLAY			68	125	·			
SAND & GRAVEL			125	256	Screen No		Open Hole(ft.)	From 263.C to 762.0
SAND & GRAVEL		· 	256	258	Make	11. m-1	Туре	
SILTSTONE	GREEN		258	275	Diamter Slot Leng	th Set		
SILTY SAND	GREEN		275	290				
SANDY SILT	GREEN		290	295			•	
SANDY SILT			295	315				
SILT	RED		315	325				
FINE SAND	GREEN		325	335	Static Water Level	······································		ан алан алан алан алан алан алан алан а
SILTSTONE	RED/GRN		335	495	31.00 n.	Land surface	Date mee	sured 1947/03/13
NO RECORD			495	545	Pumping Level (belo	w land surface	e)	
SHALE & CLAY	RED/GRN		545	762	37.00 ft. after		hrs. pumpling	350.00 g.p.m.
					Wellhead Completion			
					Pitless adapter manufactu	rer	MO:	
					Casing Protection At-grate (Environment	tal Wells and Borin	os ONLY)	12 in. above grade Basement offset
					Grouting Information	Well grou	ted? TYES T	ю
					Nearest Known Sour	et	Direction	Туре
					Wett disinfected upon com Pump Not Installed	pletion?		7/00/00
				ALLEY THE PERSONNEL	Manufacture's name Model number			>5 00
					Length of drop pipe	Material	**************************************	25.00 Volts apacity g.p.m
					Type Turb	*		-heered
Remarks					Abandoned Wells		VEC	
	2-1987. M.G.S. NO. 61.				Does properly have any no Variance	t in use and not se	aled well(s)?	NO
SEEMS INCONGRUOU	JS UNLESS GRAVEL IN	I DHIFT CONT	HIB.		Was a variance granted fro	m the MDH for this	well? YES	NO
					Well Contractor Cerfi	cation		
					Layne Well Co.		27010	
First Bedrock CMTS	•	Mt.Simon-Fond c			License Business Na	me	Lic. or F	Reg No.
Last Strat PMSU Course Well Index v.5	Depth to E REPORT	Bedrock Printed on 3		8.00 ft.	Name of Driller		Date	
COLOR 1 19 121 (1686) 1 1	13.12.1.73N F	CIBRED OD -	マエロイムリー	ιυ i	HUNDER OF CHILDE		Laic	HE-01205-07 (Boy 2/94)

Unique Well Number	County	Chieada					MAININE	MINNESOTA DEBAPTMENT OF HEALTH	חבאו דע	a de la companya de l	and the second	1000
217922		North Branch 151C					WEL	WELL AND BORING RECORD MINNESOTA STATUTES CHAPTER 1031	CORD TER 1031		Entry Late Update Date Received Date	
Well Name NORTH BRANCH 1	Township Range 35 21	o Range Dir 5 21 W		Section Subsection 21 BBCDBA	bsection BBCDBA	Depth	Depth Drilled 762 ft	Depth Completed 762 ft	Date Completed 1947/03/13	Lic/Reg. No. 27010	Drifler Name	
Elevation 895.00 ft.	Method 7.5	Method 7.5 minute topographic		Aquiter Mt.Simon-Fond du lac	limon-Fe	np puc		Depth to Bedrock 258 ft.		Open Hole 263-762	SWL 31	a de la companya de l
ated	Minnesota Geological Survey	al Survey			Loca	Location Method	poq	GPS Code Measurements (Ps Universal Transverse Mercator(UTM) - NAD83 - Zone 15 - Meters	ients (Ps Universe	al Transverse Mercator	(UTM) - NAD83 - Zone	15 - Meters
Program Uni No.Verified Information from owner	ation from owr	ler			Input Input	Input Source Input Date		1999/07/26		UTM Easting (X) 501632	UTM Northing (Y) 5039701	(
Geologic Interpretation	Tony Runkel				Agency	cy	N	MGS	<u> </u>	Interpretation Method	Geologic study 1:24k to 1:100k	lk to 1:100k
				DEPTH	Ŧ	ELE	ELEVATION			an de la contra de l	LITHOLOGY	
Geological Material		Color	Hardness	From To		Thick From To	n To	Stratigraphy		Primary		Minor
SAND				0	68 68	895	827	Sand		Sand		
CLAY				68	125 57	827	770	Clay		Olay		
SAND & GRAVEL				125	256 131	1 770	639	Sand & larger		Sand	Gravel	da ta la contra da c
SAND & GRAVEL				256	258 2	639	637	Sand & larger		Soil	Głavel	
SILTSTONE		GREEN		258	275 17	637	620	Mt.Simon		Siltstone	Sandstone	a an
SILTY SAND		GREEN		275	290 15	620	605	Mt.Simon		Shale	Sandstone	
SANDY SILT		GREEN		290	295 5	605	600	M.Simon		Shale	Sandstone	
SANDY SILT				295	315 20	600	580	Mid. Proterozoic Sedimentary	a	Shale	Sandstone	An of south ()
SILT		RED		315	325 10	580	570	Mid. Proterozoic Sedimentary		Sittstone	nan mengan menanta kana menanta menanta kana menanta kana kana kana kana kana kana kana	and a share to the product of the pr
FINE SAND		GREEN	-	325	335 10	570	560	Mid. Proterozoic Sedimentary		Sandstone		
SILTSTONE	anaa oo ahaa ahaa ahaa ahaa ahaa ahaa ah	RED/GRN		335	495 160	0 560	400	Mid. Proterozoic Sedimentary		Siltstone		
NO RECORD	r de se velocemente de Verene ser refere - a contra contra contra contra contra contra contra contra contra con			495	545 50	400	350	Mid. Proterozoic Sedimentary		Shale	Sandstone	and a feature of the second statement of the second statement of the second statement of the second statement of
SHALE & CLAY		RED/GRN		545	762 217	7 350	133	Mid. Proterozoic Sedimentary		Shale	Olay	

County Well Index Version 5 WELL STRATIGRAPHY REPORT

Printed on 05/18/2010

Unique Well Number County Chisago MINNESOTA					A DEPARTMENT OF HEALTI	Н	Entry Date	1988/04/07	
				VELL AND BORING RECORD			Update Date 2009/07/30		
Quad Id 1510 MINNESC					TA STATUTES CHAPTER 1031	Received Dat	e		
Well Name NORTH BRANCH 2					Well Depth Dep	oth Comple	h Completed Date Well Completed		
Township Range Di 35 21 W	r Section Subsecti 21 BBCDC			S .00 ft.	733.00 ft	360.00		· 1978/10/06	
Well Address			090	.00 +1.	Drilling Method Cal	ble Tool			
Wen Address	NORTH BR	ANCH 2			Drilling Fluid	1	- 11.1.1		
NORTH BRANCH	MN	55056	(Changed	Drinnig Fluid	VV (ell Hydrofractured? From	YES NC	
Contact Address	CITY OF NO	ORTH BRANCH			Use Community Supply		LIGHT	IG D9	
NORTHORNOLL	• • • •					-	Shoe? 🖌 YES 🔽 NO	Hole Diameter (in.)	
NORTH BRANCH	MN	55056			Diameter 16	Depth	261		
					24.00 in. from 0.00 to 74. 16.00 in. from 0.00 to 261.	.00 ft.	lbs/tt lbs/tt		
Description	Color	Hardness	From	To (ft.)					
SAND			0	72					
CLAY	RED		72	132	······································				
GRAVEL & ROCK		[132	165	Screen Yes		Open Hole(ft.) Fr		
SAND	RED		165	188	Make JOHNSON Diamter Slot Length Set		Type stainles:	steel	
GRAVEL & ROCK			188	256		9 ft. to 30	19 ft.		
GRAVEL & ROCK			256	258	8.00 35 51 309	9 ft. to 36	0 ft.		
SHALE	GREEN	HARD	258	298					
SHALE	GREEN	I HARD	298	308					
SHALE	RED	HARD	308	360					
SHALE & SANDY MUE	RED		360	733	Static Water Level			9 (n h ()	
					32.00 n. Land	d surface	Date measure	a 1978/10/02	
					Pumping Level (below land	d surface)			
					215.00 ft. after		hrs. pumpting	350.00 g.p.m.	
					Wellhead Completion		Model		
					Pitless adapter manufacturer		- 11 2.	2 in. above grade	
					At-grate (Environmental Wells	s and Borings		asement offset	
					Grouting Information	Well grouted	7 🔽 YES 🗍 NO		
	·				Material Neat Cement	From ().	0 то 74.0 н.		
								170.1908	
					Nearest Known Source of	Contamina	tion		
					teet Well disinfected upon completion	a 11 yrs	Direction	Туре	
					Pump	10 1 123		001	
					Not Installed		Date installed		
					Manufacture's name				
					Model number Length of drop pipe Materi	-ial	НР Сарас	Volts ity g.p.m	
					Туре				
Remarks					Abandoned Wells				
GAMMA LOGGED 4-2	6-1978. M.G.S. NO.	1356. WELL BAC	k Fille	ED TO	Does property have any not in use and not sealed well(s)? YES NO				
360 FT.					Variance Was a variance granted from the N	MOH for this w	ell? YES	NO	
					Well Contractor Cerfication		YES		
					Bergerson-Caswell	••	27058		
					License Business Name	·	Lic. or Reg	No	
First Bedrock CMTS	Aquif	er Mt.Simon-Ford	du iac		HENRICH, E.		LIC. OF REG	INU.	
Last Strat PMSU	an a	to Bedrock		56.00 ft.			anna an		
Consty Well Index v.2	REPORT	Printed on	5/18/20	10	Name of Driller		Date 💡	E-01205-07 (Rev. 2/99)	

Unique Well Number	County	Chisago				W	IINNES	MINNESOTA DEPARTMENT OF HEALTH	TEALTH		Entry Date	1988/04/07
112244	Quad Quad Id	North Branch 151C	4			N	WELI	WELL AND BORING RECORD MINNESOTA STATUTES CHAPTER 1031	ORD ER 1031		Update Date Received Date	te te
Well Name NORTH BRANCH 2	Townshi 3	Township Range L 35 21	Dir Sectio W 21	n Su	lbsection BBCDCB	Depth Drilled 733 ft	hilled 733 ft	Depth Completed 360 ft	Date Completed 1978/10/06	Lic/Reg. No. 27058	Driller Name HENRICH. E.	
Elevation 896.00 ft.	Method 7.5	Method 7.5 minute topographic	1	quiter Mt.	Aquiter Mt. Simon-Fond du lac	nd du lac		Depth to Bedrock 256 ft.	Screen	Screen 259-360	SWL 32	
Field Located Minnesota Geological S Program Uni No.Verified Information from owner Geologic Interpretation Tony Runkel	Minnesota Geological Survey Information from owner tation Tony Runkel	al Survey her			Location M Input Sour Input Date Agency	Location Method Input Source Input Date Agency		GPS Code Measurements (Ps Universal Transverse Mercator(UTM) - NAD83 - Zone 15 - Meters UTM Easting (X) UTM Northing (Y) 1999/07/26 503670 MGS	ants (Ps Universa u	sal Transverse Mercato UTM Easting (X) 501601	r(UTM) - NAD83 - Zone 1 UTM Northing (Y) 5039670	ne 15 - Meters (Y)
		,	474 - 404 Anno 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994	DEI	DEPTH		ELEVATION				I ITHOLOGY SIMUY 1.244 IU 1.1004	24N [0 1.100%
Geological Material		Color	Hardness	s From To	1	Thick From To	To	Stratigraphy	10.	Primary	Secondary	Minor
SAND				0	72 72	896	824	Sand	S	Sand		
CLAY		RED		72	132 60	824	764	Clay-red	0	Clay		
GRAVEL & ROCK				132	165 33	764	731	Gravel (+larger)	0	Gravel	Cobbie	
SAND		RED		165	188 23	731	708	Sand-red	S .	Sand		
GRAVEL & ROCK				183	256 68	708	640	Gravel (+larger)	C	Gravel	Coble	
GRAVEL & ROCK		-1-1000		256	258 2	640	638	Mt.Simon	S	Sandstone	Shale	
SHALE		GREEN	HARD	258	298 40	638	598	Mt.Simon	S I	Sandstone	Shale	
SHALE		GREEN	HARD	298	308 10	598	588	Mid. Proterozoic Sedimentary		Shale	Sittstone	
SHALE		RED	HARD	308	360 52	588	536	Mid. Proterozoic Sedimentary		Shale	Siltstone	
SHALE & SANDY MUD		RED		360	733 373	536	163	Mid, Proterozoic Sedimentary		Shale	Silistone	Sandstone

County Well Index Version 5 WELL STRATIGRAPHY REPORT

Unique Well Number	County	Chisago		Min	NESOT	DEPARTMENT OF HEALTH	Ent	try Date	1993/08/18
522767	Quad Quad Id	North Branch				ID BORING RECORD	Up	date Date ceived Date	2007/05/15
Well Name NORTH BI						Well Depth Depth C	Completed	Date W	eli Completed
Township Range Dir 35 21 W	r Section 20	Subsection BCDBDA	Field Locate Elevation		3 .00 ft.	304.00 ft 3	04.00 ft		1993/00/00
Well and Contact Add		*****			.00	Drilling Method Cable T	ínol	hall " in statistic gentlesen aventlements on a statistic over	
FLINK AV	11603 DF	איאיין ראשעי	aen nu.cj			Drilling Fluid			
NORTH BRANCH		MN	55056	C	Changed	Drining Flatu	Well Hydrot Fro		I YES NO
						Use Community Supply	Pro	11	11, 10
						Casing Type Steel (black or lo Dlameter 18 18.00 in. from 0.00 to 186.00 ft	Depth 186	res No Ha	ble Diameter (in.)
Description		Color	Hardness	From	To (ft.)				
SILTY SAND	¥1-0	BROWN	SOFT	0	10 (n.) 4				
SAND		BROWN	ISOFT	4	1 13				
SANDY CLAY		GRAY	MEDIUM	13	20	Screen No	Open I	Hole(ft.) Fron	n 186.C to 304.C
SANDY CLAY & GRAV	'EL	GRAY	MEDIUM	20	33	Make	Туре		
SAND	наар 300 маанар алдаар ар ар осулсун улсунд аруун	BROWN	SOFT	33	60	Diamter Slot Length Set			
CLAY		RED/BRN	ISOFT	60	89				
SANDY CLAY		RED/BRN	MED-HRD	89	1 101				
SANDY CLAY & GRAV	·····	RED/BRN	MED-HRD	101	110				
SAND & GRAVEL	•	BRN/GRY	MED-HRD	110	116				
SAND & GRAVEL	~~~~~	BROWN	MED-HRD	116	130				
SANDY GRAVEL	·	BRN/GRY	MED-HRD	130	150	Static Water Level 32.00 ft. Land sur	faca	Date measured	1009/00/00
SAND & GRAVEL	***	BROWN	MED-HRD	150	158	Pumping Level (below land sur		vine measured	1000/00
SAND, GRAVEL, SHAL	F	BRN/GRN	MED-HRD	158	163		,00 hrs. pum	otina 5	00.00 g.p.m.
SANDSTONE, GRAVEL		WHT/GRY	MEDIUM	163	169	Wellhead Completion		1	
SANDSTONE		WHITE	MEDIUM	169	169	Pitless adapter manufacturer		Model	
SANDSTONE, SHALE		WHT/GRN	MEDIUM	169	183	Casing Protection		12	in. above grade
SANDSTONE		WHITE	SOFT	183	240	At-grate (Environmental Wells and	Borings ONLY)	Bas	ement offset
SANDSTONE		WHITE	SOFT	240	248	Grouting Information Well	grouted? YEs	s 🔽 NO	
SANDSTONE, PEBBLE		WHITE	,	248	254				
SANDSTONE, SHALE		WHT/GRN	MEDIUM	254	259				
SANDSTONE, SHALE		VARIED	SOFT	259	263				
SANDSTONE, SHALE		WHT/GRN	SOFT	263	304				
			<u>.</u>		L	·			
						Nearest Known Source of Cont			7
						feet Well disinfected upon completion?	Direction NO		Туре
						Pump	Date Install		
						Manufacture's name Model number	and a second	ЫР	1/~12-
						Length of drop pipe Material		HP Capacity	Volts g.p.m
						Туре			
Remarks						Abandoned Wells	 1 1 1	vee 12	NO
GAMMA LOGGED 3-12	2-1993. M.	G.S. NO.338	3.			Does property have any not in use and n Variance	iot sealed well(s)?	YES 🖌	UN
						Variance Was a variance granted from the MDH fo	or this well?	YES	NO
						Well Contractor Cerfication			
						Traut M.J. Well Co.	7	1536	
						License Business Name			
First Bedrock CMTS Last Strat CMTS		Aquifer Depth to E		16	3.00 ft.	TRAUT, T.	Ĺ	ic. or Reg N	0.
County Well Index v.5	REPO	RT	Printed on	5/18/20	10	Name of Driller	Da	ite HE-	01205-07 (Rev. 2/99)

522767	County Quad Quad Id	Chisago North Branch 151C						NESOTA DEP ELL AND B VESOTA STAT	MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING RECORD MINNESOTA STATUTES CHAPTER 1031			Entry Date Update Date Received Date	1993/08/18 2007/05/15 te
Well Name NORTH BRANCH 3	Townsh	Township Range Dír 35 21 W	ir Section W 20		Subsection BCDBDA	Dept	Depth Drilled 304 ft		Depth Completed Date Co 304 ft 199	Date Completed 1993/00/00	Lic/Reg. No. 71536	Driller Name TRAUT, T.	
Elevation 907.00 ft.	Method 7.	Method 7.5 minute topographic		Aquifer Mt. Simon	Simon			Depth to Bedrock 163	rock 163 ft.	Open Hole 186-304	186-304	SWL 32	
ated	Minnesota Geological Survey	cal Survey			Loc	Location N	Method	GPS Code	GPS Code Measurements (Ps Universal Transverse Mercator(UTM) - NAD83 - Zone 15 - Meters	s Universal Tra	nsverse Mercator	r(UTM) - NAD83 - Zone	15 - Meters
Program Uni No.Verified Information from owner	ation from ov	vner			du]	Input Source Input Date	eo	1999/05/27			UTM Easting (X) 500198	UTM Northing (Y) 5039362	()
Geologic Interpretation	Bruce Bloomgren	omgren	, in the second s	4 - 17 - 17 - 18 - 18 - 18 - 18 - 18 - 18	Age	Agency		MGS		Interpr	Interpretation Method	Geologic study 1:24k to 1:100k	ik to 1:100k
				DEPTH	Η	Ξ	ELEVATION	NO				ПТНОГОСУ	ad a salara lam oo magaalaa aa a
Geological Materiał		Calor	Hardness	From To		Thick Fi	From To	Stratigraphy	ohy	Primary	try	Secondary	Minor
SILTY SAND		BROWN	SOFT	0	4		907 903	33 Sand & silt-brown	lt-brown	Sand		Silt	
SAND		BROWN	SOFT		13 9		903 894	34 Sand-brown	WU	Sand			
SANDY CLAY		GRAY	MEDIUM	13	20 7		894 887	37 Clay & sand-gray	nd-gray	Clay		Sand	reme mar a constant a constant de arty al de arty and de arty
SANDY CLAY & GRAVEL		GRAY	MEDIUM	20	33 1	13 8(887 874		Pebbly sand/silt/clay-gray	Clay		Sand	Gravel
SAND		BROWN	SOFT	33	60 2	27 8.	874 847	17 Sand-brown	uw	Sand			-
CLAY		RED/BRN	V SOFT	60	89 2	29 8.	847 818	8 Clay		Clay			
SANDY CLAY		RED/BRN	RED/BRN MED-HRD	68	101 1	12 8	818 806	16 Clay & sand	'nď	Clay		Sand	
SANDY CLAY & GRAVEL		RED/BRI	RED/BRN MED-HRD 101	101	110 9		806 797		Pebbly sand/silt/clay	Clay		Sand	Gravel
SAND & GRAVEL		BRN/GRY	Y MED-HRD	110	116 6		797 791	11 Sand & larger	rger	Sand	an a management and a factor of the day is a part of the second second second second second second second second	Gravel	
SAND & GRAVEL		BROWN	MED-HRD	116	130 1	14 79	777 777		Sand & larger-brown	Sand		Gravel	
SANDY GRAVEL		BRN/GRY	Y MED-HRD	130	150 20		777 757	77 Sand & larger	rger	Gravel		Sand	
SAND & GRAVEL		BROWN	MED-HRD	150	158 8		57 749		Sand & larger-brown	Sand	a na mana ana ana ana ana ana ana ana an	Gravel	
SAND, GRAVEL, SHALE		BRN/GR	BRN/GRN MED-HRD	158	163 5		749 744		Pebbly sand/sill/clay	Sand		Gravel	Clay
SANDSTONE, GRAVEL		WHT/GR	WHT/GRY MEDIUM	163	169 6	, ···	744 738	88 Mt.Simon	andren menatu kanala (alalala)	Sandstone	tone		A RAY NA THE AND A RAY WAR AND A RAY AND
SANDSTONE		WHITE	MEDIUM	169	169 0	683 	738 738	8 Mt.Simon	rener men of the part and the communication of the state of the	Sandstone	stone		
SANDSTONE. SHALE		WHT/GRI	WHT/GRN MEDIUM	169	183 14	-1458-0-5-5	738 724	4 Mt.Simon		Sandstone	stone	Shale	
SANDSTONE		WHITE	SOFT	183	240 57		724 667	57 Mt.Simon		Sandstone	tone		
SANDSTONE		WHITE	SOFT	240	248 8		667 659	9 MLSimon		Sandstone	tione		
SANDSTONE, PEBBLE		WHITE		248	254 6	·····	659 653	3 Mt.Simon		Sandstone	stone		
SANDSTONE. SHALE		WHT/GRI	WHT/GRN MEDIUM	254	259 5	653	3 648	8 Mt.Simon	and a first sector of the sect	Sandstone	itone	Shale	U MARAA MAAA MAAA MAAA MAAAA MAAAA MAAAAA MAAAAA MAAAAAA
SANDSTONE, SHALE		VARIED	SOFT	259	263 4	648	8 644	4 Mt.Simon		Sandstone	tone	Shale	and a second
SANDSTONE. SHALE		WHT/GRN SOFT	N SOFT	263	304 41	1 644	4 603	3 Mt.Simon		Sandstone	tone	Shale	

County Weil Index Version 5. WELL STRATIGRAPHY REPORT

Printed on 05/18/2010

Unique Well Number 706844	County Chisago Quad Stark Quad Id 152D	**************************************	WE		DEPARTMENT OF HEALTH	eta (1997),	Entry Date Update Date Received Dat	2005/03/10 2008/10/31 e 2005/02/14
Well Name NORTH B			**************************************	<i>minicoo</i>	1			Well Completed
Township Range Dir	r Section Subsection					Completed		2004/02/10
<u>35 21 W</u>	19 DBCBAC	Elevation		00 ft.				2004/02/10
Well Address	NORTH BRAN(CH WATER & I	LIGHT		Drilling Method Cable	·····		7 3 7° 11
	MN				Drilling Fluid	Well H	hydrofractured?	
					Bentonite Use Community Supply		From	ft. to
					Use Community Supply Casing Type Steel (black or lo	M Drive Shoe	YES NO	Hole Diameter (in.)
					Diameter 18 100 10.00 10 169.00 f 18.00 in. from 0.00 to 171.00 f	Depth 17 t. 94,621b	sift	24.0(то <u>169.0</u> 18.0(то <u>240.0</u>
Description	Color	Hardness	From	To (ft.)				
SAND	BROWN	SOFT	0	25				
HARDPAN	VARIED	HARD	25	32				12 V4 V4112 V7 A12 V7 A12 AV A12 AV A12 V41 V A12 V7 V A12 V7 V1 V42 MARKAN V7 V7 V
CEMENTED SAND	BROWN	HARD	32	82	Screen Yes	Ļ	Open Hole(ft.) Fre	om to
CLAY & ROCKS	BROWN	MEDIUM	82	108	Make JOHNSON Diamter Slot Length Set		Туре	
SANDY CLAY	BROWN	HARD	108	148		t. to 218 t	fl.	
SAND ROCKS	BROWN	SOFT	148	225		-		
FINE SAND	BROWN	SOFT	225	240				
					Wellhead Completion Pitless adapter manufacturer PUMP Casing Protection At-grate (Environmental Wells and	Inface) .00 h HOUSE Horings ONL Il grouted? omT	Model ✓ 1 .Y) E ✓ YES NO s 169.0 ft, 7.	ed 2005/01/27 350.00 g.p.m. 2 in. above grade basement offset 50 Cubic yards
					500 feet S Well disinfected upon completion? ✓ Pump ✓ ✓ Manufacture's name Model number		Direction SE	EW Type
					Length of drop pipe Material		Сарас	
Remarks ELEVATION: 910.0 F ZIEGLER (651)287-831	T. MSGS QUAD: D-15/ 16 ROGER E. RENNER		WSB N	ANCY	Abandoned Wells Does property have any not in use and Variance Was a variance granted from the MDH Well Contractor Cerfication Renner E.H. Well			7] NO 7] NO
		jag jama			License Business Name		Lic. or Reg	No.
First Bedrock Last Strat QFUB	Aquifer Depth to	Quat. Buried A Bedrock	rtes. Aqui	ter ft.	SAMPSON, J.	energen er fansk af VMS-ADAASS-Merera		
Conney Weil India v.5	REPORT	Printed or	5/18/20	10	Name of Driller		Date H	IE-01205-07 (Rev. 2/99)

Weil Name Township Range Dir Section Subs NORTH BRANCH WATER & LK 35 21 W 19 DE Elevation 914.00 ft. Method 7.5 minute topographic Aquifer Qu Field Located Minnesota Department of Health Aquifer Qu Program Uni No.Verified Aquifer Qu Geologic Interpretation Emily Bauer Aduiter Color Geological Material Color Hardness SAND SAND SOFT 0 HARDPAN VARIED HARD 25 CEMENTED SAND BROWN HARD 32 CLAY & ROCKS BROWN MARDIUM 82 SANDY CLAY BROWN HARD 108			NW NW		WELL AND BORING RECORD MINNESOTA STATUTES CHAPTER 1031	ECORD TER 1031		Update Date Received Date	2008/10/31 2005/02/14
tion 914.00 ft. Method 7.5 minute topographic Located Minnesota Department of Health am o.Veritied gic Interpretation Emily Bauer gical Material Color Hardr BROWN SOFT PAN VARIED HARD NTED SAND VARIED HARD & ROCKS BROWN MEDIL & ROCKS BROWN HARD	Section Subsection 19 DBCBAC		Depth Drilled 240 ft		Depth Completed 220 ft	Date Completed 2004/02/10	Lic/Reg. No. 71015	Driller Name SAMPSON, J.	
Located Minnesota Department of Health am o. Veritied gic Interpretation Emily Bauer gical Material Color BROWN PAN VARIED N NTED SAND BROWN BROWN VCLAY BROWN	> Aquifer Quat. Burled Artes. Aqui Depth to Bedrock	luried Ar	tes. Aqu	Dep		ft. Screer	Screen 158-218	SWL 29.1	anna chuire ann an Anna Lanna a' tha ann an t
am o. Verified gic Interpretation Emily Bauer gical Material Emily Bauer BROWN PAN VARIED PAN VARIED RROWN BROWN PAN BROWN PAN BROWN PAN PAN PAN PAN PAN PAN PAN PAN PAN PA		Location	Location Method	6		Universa	al Transverse Mercator	Universal Transverse Mercator(UTM) - NAD83 - Zone 15 - Meters	15 - Meters
gic Interpretation Emily Bauer gical Material Color PAN VARIED BROWN VARIED I NTED SAND BROWN BROWN VCLAY CLAY BROWN		Input Source Input Date	urce te	20(2004/11/22	2	UTM Easting (X) 499154	UTM Northing (Y) 5038991	
gical Material Color PAN Color BROWN COLAN NIED SAND BROWN BROWN CLAY CLAY BROWN		Agency		MGS	Ş	<u> </u>	Interpretation Method	Geologic study 1:24k to 1:100k	to 1:100k
gical Material Color Color PAN VARIED BROWN A NTED SAND BROWN BROWN A ROCKS BROWN Y CLAY Y CLAY CLAY CLAY COLAY CO	DEPTH		ELEVATION	TION				ΓΙΤΗΟΓΟGΥ	
PAN SOFT PAN VARIED HARD NTED SAND BROWN HARD & ROCKS BROWN MEDIUM Y CLAY BROWN HARD	Hardness From To		Thick From To		Stratigraphy		Primary	Secondary Mir	Minor
VARIED HARD BROWN HARD BROWN MEDIUM BROWN HARD		25	914	889	Sand-brown		Sand		
4D BROWN HARD BROWN MEDIUM BROWN HARD		1~	889	882	Pebbly sand/sill/clay		Hardpan		
BROWN MEDIUM BROWN HARD		50	882 8	832	Sand-brown		Sand		
BROWN HABD	82	108 26	832 8	806	Pebbly sand/silt/clay-brown		Clay	Cobble	ter - 10 - ter ef ver dre en 19 mar 19 ma
	108	148 40	806	766	Clay & sand-brown		Clay	Sand	an a mar da mar a mar ann a a mar ann an ann an ann ann ann ann ann ann
SAND ROCKS BROWN SOFT 148	148	225 77	766	689	Sand & larger-brown		Sand	Cabble	
FINE SAND BROWN SOFT 225	225	240 15	689 (674	Sand-brown		Sand		

ų

County Weill Index Version 5 WELL STRATIGRAPHY REPORT

Printed on 05/18/2010

Unique Well Number	County	Chisago		MIN	INESOT/	A DEPARTME	NT OF HEALTH		Entry Date	2007/07/02
749383		Stark		WE	ELL AN	ID BORIN	G RECORD		Update Date	
	Quad td	152D			MINNESO	TA STATUTES	CHAPTER 1031		Received D	ate
Well Name NORTH BI						Well Depth	Depth	Completed	Date	e Well Completed
Township Range Dir 35 21 W	Section 9	Subsection CBBADA	Field Locate Elevation	d MDI 912		467.00		467.00 ft		2007/09/14
Well Address	an a sa ann ann da bhann dh' le sa ann a bh ann ann a	RTH BRANC		U 5 Z.		Drilling Met				Miller Rev (
38420 WOOD DUCK L			on o			Drilling Flui	***			- 11 12
NORTH BRANCH		MN	55056	C	Changed	Bentonite	a	Well Hy	ydrofractured	
Contact Address	CIT	Y OR NORT	H BRANCH				mmunity Supply	1	From	ft. to
6388 MAPLE ST						Burnetter	e Steel (black or I	OW Drive Shoe?		Hole Diameter (in.)
NORTH BRANCH		MN	55056	C	Shanged		meter 24 m <u>0.00</u> to 1 <u>93.90</u>	Depth 329 ft. 118.65 lbs/ ft. 94.62 lbs/	11	29.0(To 324.0 24.0(To 467.0
Description		Color	l		17- (0)					
	••••••••••••••••••••••••••••••••••••••	Color BROWN	Hardness MEDIUM	From	To (ft.)					
SAND, CLAY, STONES		GREEN	MEDIUM	0	155					
FRANCONIA SANDST		GRN/WHT	M.SOFT	155	178	Screen N	0	0	pen Hole(ft.) F	rom 329.C to 467.0
EAU CLAIRE SHALE	E	GRN/BLU	HARD	178	······································	Make		T	ype	Millinger from Barra versonniger filleringen bar slanda og ander ander ander ander ander ander ander ander ande
MT. SIMON		TAN/WHT	MEDIUM	315	315 465	Diamter S	lot Length Set			
RED CLASTICS		RED	HARD	465	467					
						56.90 Wellhead Co Pitless adapter Casing Pro Casing Pro At-grate (E Grouting Info	mpletion manufacturer otection nvironmental Wells and Drmation We	d Borings ONLY)	YES NO	1200.00 g.p.m. 12 in. above grade Basement offset
Remarks GAMMA LOGGED 6-15	i-2007. MG	.S. NO. 470(6. LOGGED BY	Y JIM TI	RAEN.	500 Well disinfecter Pump Manufacture's Model number Length of drop Type Abandoned 1 Does property h Variance Was a variance Well Contract EH Renner a	nameMaterial Wells lave any not in use and granted from the MDH stor Cerfication nd Sons, Inc.	Date I	NO nstalled HP Capa s)? YES VES 1431	SEW Type Volts soltyg.p.m
First Bedrock CFRN		Aquifer	Mt.Simon			License Bus			Lic. or Reg	g No.
Last Strat PMSU		Depth to E	Bedrock		5.00 ft.	SIGAFOOS,				
County Well Index v.5	REPOR	T	Printed on	5/18/201	10	Name of E	riller		Date	HE-01205-07 (Rev. 2/99)

749383	Quad	Unisago Stark						ESOIAU	WELL AND BORING RECORD	ALTH ORD		Entry Date Update Date	2007/07/02 c 2009/06/17
		1701	۵۰ ـ ۱۹۹۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰				TATATIA			1001		Heceived Uate	ale
Well Name NORTH BRANCH 5	Township 35	Township Range Dir 35 21 W	 Section Subsection 19 CBBADA 	Subs CB(ibsection CBBADA	Dep	Depth Drilled 467 ft		Depth Completed D 467 ft	Date Completed 2007/09/14	Lic/Reg. No. 1431	Driller Name SIGAFOOS, R.	
Elevation 912.00 ft.	Method 7.5	Method 7.5 minute topographic Aquifer Mt.Simon	aphic Aqui	ifer Mt.§	Simon	****	1	Depth to F	Depth to Bedrock 155 ft.	Open F	Open Hole 329-467	SWL 15	
Field Located Program					Loc	Location Met Input Source	Location Method Input Source	Digitiza	tion (Screen) - M	ap (1:: Universa U	Digitization (Screen) - Map (1: Universal Transverse Mercator(UTM) - NAD83 - Zone 15 - Meters UTM Easting (X) UTM Northing (Y)	(UTM) - NAD83 - Zone 1 UTM Northing (Y)	te 15 - Meters (Y)
Uni No.Verified Info/GPS from data source	PS from data :	source			ndu]	Input Date		2007/07/02	02		498446	5039147	
Leologic Interpretation ony Hunkel	Tony Runke		8 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	.	Agency	hcy	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	MGS		ų	Interpretation Method	Geologic study 1:24k to 1:100k	24k to 1:100k
				DEPTH	H	Ψ	ELEVATION	N				ΓΙΤΗΟLOGY	
Geological Material		Color	Hardness From To	From	k –	hick F	Thick From To		Stratigraphy	, <u></u>	Primary	Secondary	Minor
SAND. CLAY, STONES		BROWN	MEDIUM	0	155 155		912 757		Pebbly sand/silt/clay-brown		Sand	Clay	Pebbles
FRANCONIA SANDSTONE	μ	GREEN	MEDIUM	155	178 20	~~~~	757 734	4 Franconia	onia		Sandstone	Shale	Dolomite
IRONTON-GALESVILLE		GRN/WHT M.SOFT	M.SOFT	178	252 74		734 660		ironton-Galesville	<i>s</i>	Sandstone		
EAU CLAIRE SHALE		GRN/BLU HARD	HARD	252	315 63		660 597	7 Eau Claire	Jaire		Shale	Sandstone	an a
MT. SIMON		TANWHT	TAN/WHT MEDIUM	315	465 150		597 447	7 Mt.Simon	non		Sandstone		
RED CLASTICS		RED	HARD	465	467 2		447 445		Mid. Proterozoic Sedimentary		Shale		wanted at 1 August water and a state of a Vicini, why we are not descendent of the

COURTY Well Index VERSION 5 WELL STRATIGRAPHY REPORT

Printed on 05/18/2010

Unique Well Number	County Chisage		MIN	INESOT	DEPARTMENT OF HE	ALTH	Entry Date	1999/07/29
	Quad North Branch				D BORING RECO		Update Date	2010/06/02
593584	Quad Id 151C				TA STATUTES CHAPTER		Received Date	
	RANCH GOLF COURSI				Well Depth	Depth Com	nloted Date V	Vell Completed
	r Section Subsection	Field Locate			410.00 ft		0 fi	1999/04/22
<u>35 21 W</u>	21 BDCCBA	Elevation		.00 ft.	· · · · · · · · · · · · · · · · · · ·			1223/04122
Well Address	NORTH BRANC	H GOL COU	RSE		Drilling Method	Non-specific		······································
NORTH BRANCH	MN	55056	(Changed	Drilling Fluid		Well Hydrofractured?	YES NO
Contact Address	CITY OF NORT	HBRANCH			Bentonite		From	ft. to
1356 MAIN ST					Use Irrigation Casing Type Steel (b	look or low Dri	ve Shoe? VES NO H	
NORTH BRANCH	MN	55056	C	Dhanged	Diameter 10 10.00 in fram0.00 to	Dep	oth 300	lole Diameter (in.) 15.0(To <u>300.0</u> 10.0(To <u>410.0</u>
Description	Color	Havenson	Erom	To (ft)				
	BLACK	Hardness SOFT	From	To (ft.)				
PEAT SANDY CLAY	GRAY	MEDIUM	5	5 21				
FINE SAND	GRAY	SOFT	21	46	Screen No	n en anderen en andere	Open Hole(ft.) Fro.	m 300.C to 410.0
LENSES CLAY/SAND	GRAY	MEDIUM	46	87	Make		Туре	
SANDY CLAY	RED/BRN	HARD	87	208	Diamter Slot Length	i Set		
CLAY/BOULDERS	RED	HARD	208	258				
CLAY/GRAVEL	RED/BRN	MEDIUM	258	2.30				
SHALE	GREEN	MEDIUM	264	295				
SANDSTONE	RED/BRN	MEDIUM	295	310				
SANDSTONE	RED/BRN	MEDIUM	310	410	Static Water Level			
					Pumping Level (below 58.50 tt. after Wellhead Completion Pitless adapter manufacture Casing Protection At-grate (Environmenta Grouting Information Material Neal Cement Material Neal Cement	11.00 er I Wells and Borin Well grou From	hrs. pumpting Model	
Remarks LOCATED: FOURTH A STRATIGRAPHY BAAS	ND PINE ST. GAMMA SED ON GAMMA & VID		14-2006.		Nearest Known Source 315 feet Well disinfected upon comp Pump Not Installed Manufacture's name AMEI Model number 81.30-3 Length of drop pipe 108.0 Type Subm Abandoned Wells Does property have any not in Variance Was a variance granted from Well Contractor Cerfic	I W Interion? YE RICAN Material ersible in use and not se in the MDH for this	Direction SD NO Date Installed 1999/06 HP 50.00 Capacit aled well(s)? YES	/00
First Bedrock CMTS Last Strat PMSU	Depth to I		2€	i4.00 ft.	Renner E.H. Well License Business Nan SCHAFFER, R.	ne	71015 Lic. or Reg t	¥o.
Cosmy Well Index v.5	REPORT	Printed or	10/15/2	010	Name of Driller		Date HE	-01205-07 (Rev. 2/99)

Unique Well Number	County	Chisado						MINN	ESOT/	MINNESOTA DEPARTMENT OF HEALTH	HEALTH		Entry Data	1994/07/29
593584	Quad Quad Id	North Branch 151C	hch					WE	ESOTA	WELL AND BORING RECORD MINNESOTA STATUTES CHAPTER 1031	CORD ER 1031		Update Date Received Date	te
Well Name Tov NORTH BRANCH GOLF COUR	Townsh COUR	Township Range UR 35 21	Dir V	Section Subsection 21 BDCCBA	Subse BDC	ibsection BDCCBA	Dept	Depth Drilled 410 ft		Depth Completed 410 ft	Date Completed 1999/04/22	Lic/Reg. No. 71015	Driller Name SCHAFFER, R.	
Elevation 887.00 ft.	Method 7.	Method 7.5 minute topographic	pograpł	1	Aquifer Mid. Proterozoic Sedime	Protero	zoic Se		Depth 1	Depth to Bedrock 264 ft.	Open F	Open Hole 300-410	SWL 24	
ated	Minnesota Geological Survey	cal Survey				Loce	Location Method	ethod		n e na fan de	Universa	I Transverse Mercator	Universal Transverse Mercator(UTM) - NAD83 - Zone 15 - Meters	e 15 - Meters
Program Uni No.Verified Information from owner	ation from ov	vner				Input	t Source t Date	e	2006/08/29	38/29	5	UTM Easting (X) 501930	UTM Northing (Y)	۲)
Geologic Interpretation Tony Runkel	Tony Runk	(el				Agency	ıcy		MGS		Ĩ	Interpretation Method	Interred from geophysical log	hysical log
			-1/11		DEPTH	Ţ	Ш	ELEVATION	N				ПТНОГОСУ	
Geological Material		Color	I	Hardness From To	From .		ick Fr	Thick From To	Str	Stratigraphy	<u> LL</u>	Primary		Minor
PEAT		BLACK		SOFT	0	5 5	887	7 882	}~	Peat-black		Peat	Organic Deposits	
SANDY CLAY		GRAY		MEDIUM	5 S	21 16	882	2 866		Olay & sand-gray		Clay	Sand	an de la mais en la desta de la mais de la m
FINE SAND		GRAY		SOFT	21	46 25	866	6 841		Sand-gray		Sand		and Print Print Laboratory in Laboratory - The Print Print Print
LENSES CLAY/SAND		GRAY		MEDIUM	46	87 41	841	1 800		Clay & sand-gray		Clay	Sand	
SANDY CLAY		RED/B	RED/BRN HARD	ARD	87 :	208 121	1 800	0 679		Clay & sand		Clay	Sand	And the second
CLAY/BOULDERS		RED	Η	HARD	208	258 50	679	9 629		Pebbly sand/silt/clay-red		Clay	Obsidian	
CLAY/GRAVEL		RED/B	RED/BRN MEDIUM		258	264 6	629	9 623		Pebbly sand/silt/clay		Clay	Gravel	
SHALE		GREEN		MEDIUM	264	295 31	623	3 592		Mt.Simon	, U	Shale		
SANDSTONE		RED/B	RED/BRN MEDIUM		295	310 15	592	2 577		Mt.Simon		Sandstone		a fan de fan
SANDSTONE		RED/B	RED/BRN MEDIUM		310 4	410 100	0 577	7 477		Mid. Proterozoic Sedimentary		Sandstone		
											ويعقب الأعوي ويستعلم والمعار المالية والمحاصرة والمحاصر والمحاط والمحاط والمحاط والمحاط والمحاط والمحاط		**************************************	**************************************

County Well Index Version 5 WELL STRATIGRAPHY REPORT

Printed on 10/15/2010

Appendix B

Aquifer Test Data and Analysis

Environmental Health Division Drinking Water Protection Section Source Water Protection Unit P.O. Box 64975 St. Paul, Minnesota 55164-0975

Aquifer Test Plan

Publ	lic W	ater Supply ID:	13001	1	PWS Name:	North Branch Water and Light	
					Contact		
		Aquifer Test Co	ntact:	John Greer			
Cont	tract	or Name and Ad	dress:	Barr Engin	eering		
				4700 West 7	77 th Street		
		City, State	e, Zip:	Minneapoli	s, MN 55435-48	03	
	Pł	none and Fax Nur	mber:	952-832-26	91 (phone) 952-8	832-2601 (fax)	
				Proposed A	Aquifer Test N	Iethod	
	1)	01				of wellhead protection rule part 4720.5520 your water supply system.	
	2) and		y cond	ucted on anot	-	of wellhead protection rule part 4720.5520 cogeologic setting determined by the	
	3)				• •	well in your water supply system and that (wellhead protection rule part 4720.5520).	
4) A pumping test conducted on a new or existing public well in your water supply system and that meets the requirements for smaller sized water systems (wellhead protection rule part 4720.5530).							
	5) part	4720.5520 and that	at was p	previously con	nducted on: 1) a	ements of wellhead protection rule public water supply well or 2) another well ent to be equivalent.	
X	6)	An existing speci	ific cap	acity test or s	pecific capacity t	est for the public water supply well.	
	7)	An existing publi	ished tr	ansmissivity	value.		
		all pumping test d f those specified ir				alue when the aquifer test method proposed	

To request this document in another format, please call the Section Receptionist at (651) 201-4700 or Division TTY at (651) 201-5797.

	Test Des	scription	
Pumped Well Unique No:	706844 (North Branch #4)	Test Duration (Hours):	24
Location	$T_{25} D_{21} W G_{-10} D D C D A C$	Pump Type:	
(Township, Range, Section, Quarters):	T35 R21W Sec19 DBCBAC	Discharge Rate:	325 gpm
Number of Observation Wells:	0	Flow Rate Measuring Device Type:	
X Confined	Unconfined		
• You must include a r	map showing the location of the p	umping well and observati	on well(s).
	Rational for Prop	osed Test Method	
Briefly describe the r	ationale for method selected:		
to. Using the TGuess Me to be 1728 ft ² /day, an Regional data from t	ft/day	d, 1985) the transmissivit ft/day.	y of the aquifer is estimated

List all unique n	umbers of we	lls that this Aqu	ifer Test Plan a	applies to:	
706844 (Well 4)					

Reviewed by:	Approved:	Yes	No	Approval Date:
--------------	-----------	-----	----	----------------

Worksheet for Estimating Transmissivity and Hydraulic Conductivity from Specific Capacity Test Data Explanation and notes attached.

Maximum iterations	100					
Error tolerance (as drawdown) 0.001 feet					

	Field Da	nta						Estimated	d Paramete	ers	Calculated	Results						Diagnostic	s				
		Depth t	o Water			Screene	d Interval					Saturated		Partial				Sol	lution Integri	ty	Se	nsitivity of T	i:
					Mean			Storage	Well loss	Aquifer	Measured	Screen		Penetration						Well Bore	to S at		
	Well			Test	Pumping	Depth to	Depth to	Coeff.	Coeff.	Thickness	Drawdown	Length	Well loss	Parameter	Specific	Transmissivity	Conductivity	Calculated	Error as	Storage	± 1 factor of	to s _w at	to b at
Location	Diam.	Initial	Final	Duration	Rate	Тор	Bottom	(S)	(C)	(b)	(s _m)	(L)	(S _w)	(S _p)	Capacity	(T)	(K)	Drawdown	Drawdown	Test	10	10% of s _m	± 25%
	inches	feet	feet	hours	gpm	feet	feet	-	sec^2/ft^5	feet	feet	feet	feet	-	gpm/ft	sq ft/sec	ft/day	feet			sq ft/sec	sq ft/sec	sq ft/sec
North Branch Well 4	18	33.0	78.0	24	325.0	158.0	218.0	0.001	0	60	45.00	60.0	0.0E+00	0.00	7.22	2.0E-02	2.9E+01	45.00	0.00%	pass	3.2E-03	2.4E-03	3.0E-03

References:

Bradbury, K.B., and E.R. Rothschild, 1985. A computerized technique for estimating the hydraulic conductivity of aquifer from specific capacity data: Ground Water vol. 23, No. 2, pp. 240-246.

ASTM International, 2004. Standard Test Method for Determining Specific Capacity and Estimating Transmissivity at the Control Well, Standard D 5472-93, in Annual Book of ASTM Standards, Vol. 04.08 pp. 1279-1282.

Worksheet for Estimating Transmissivity and Hydraulic Conductivity from Specific Capacity Test Data

Explanation

This spreadsheet estimates transmissivity and hydraulic conductivity following the method of Bradbury and Rothschild (1985). The method applies the Cooper-Jacob approximation of the Theis equation, with corrections for partial penetration and well loss, as indicated in equations 1-4.

Equation 1 is the modified Cooper-Jacob approximation of the Theis equation for transient radial flow to a well in a confined aquifer. Equation 2 calculates well loss, based on a correction factor (C), which must be estimated or determined by alternate test methods. Equation 3 calculates a unitless partial penetration correction factor (see assumptions below), employing the function G(L/b), approximated in Equation 4 with a polynomial best-fit.

The estimates of transmissivity and conductivity yielded by this method are imperfect, and presumed to be less realistic than the estimates that can be made from time/drawdown or distance/drawdown tests, if those data are available. This solution method includes several assumptions that should limit the confidence placed in its estimates:

a) the tested aquifer is confined, non-leaky, homogeneous and isotropic;

b) the storage coefficient of the aquifer is known;

c) the well loss is known;

d) the effective aquifer thickness is known.

In most cases, the storage coefficient, well loss, and aquifer thickness can only be estimated. The error introduced is non-negligible, but can be loosely bracketed. The diagnostic section of the worksheet includes a limited sensitivity analysis.

If the user has little control on well loss, or aquifer thickness, the well loss and partial penetration correction terms may be removed, respectively, by setting the well loss coefficient (C) equal to zero, and the aquifer thickness (b) equal to the saturated screen interval. Note that the partial penetration correction factor assumes isotropic conditions ($K_h = K_2$), and gives a value of T extrapolated from the screened interval to the full aquifer thickness. If the aquifer is anisotropic, this correction is inappropriate.

Eq. 1 $T = \frac{Q}{4\pi (s_m - s_w)} \left[\ln \left(\frac{2.25Tt}{r_w^2 S} \right) + 2s_p \right]$

Eq. 2 $s_w = CQ^2$

Eq. 3
$$s_p = \frac{1 - L/b}{L/b} \left(\ln \frac{b}{r_w} - G(L/b) \right)$$

Eq. 4 $G(L/b) = 2.948 - 7.363(L/b) + 11.447(L/b)^2 - 4.675(L/b)^3$

b - aquifer thickness	s _m - measured drawdown
C - well loss coefficient	s _w - well loss
L - screen length	sp - partial penetration parameter
Q - mean pumping rate	S - storativity
rw - effective radius	T - transmissivity
	t numerica duration

t - pumping duration

Usage Notes

Units

The user may chose any combination of units for field data, estimated parameters and calculated results by changing the units shown in the column headers. Each of these cells has an embedded pull down list from which to chose. Only the listed options will work, because the embedded functions look for specific text strings. The units of the diagnostic columns are linked to the calculated results, and shouldn't be manually changed.

Input

Field data may be pasted in or entered directly. The units header should be changed to agree with the data. All depth values are assumed to be from a common reference point (e.g., ground surface).

Calculated Results

The calculated results cells all make use of user-defined functions written in Visual Basic for Applications. The functions and their arguments are listed to the right. The code may be viewed by opening Excel's Visual Basic Editor. Cells containing these functions may be drag-filled or copied down their respective columns to extend the table. Changing the units in the column header will automatically change the output units.

Diagnostics

The difference between calculated drawdown the measured drawdown is a metric for assessing the convergence of the solution. If the error is unacceptably high, the maximum iterations and error tolerance may be adjusted in the fields above the table. The well bore storage test checks that the specific capacity test rate and duration were adequate to negate the influence of water removed from the well casing on the measured drawdown. The test applies criterion that the test duration be longer than 25°r_w²/T (ASTM, 2004). Note that this check assumes well radius and riser radius are equal.

The worksheet assesses the sensitivity of transmissivity to variation in the storage coefficient (S), to the degree of well loss (s_w) , and to the effective isotropic aquifer thickness (b). The resulting values shown indicate the variance of T from the actual estimate, when the target parameter is adjusted as indicated.

Functions and arguments employed in this workbook

CalcDD(TGuess(well diam., diam. units, t, t units, Q, Q units, S, s_w, s_w units, s_p, T, T units, output units) Beturns drawdown calculated from an estimated T.

Getdd(dtw initial, dtw initial units, dtw final, dtw final units, output units)

Returns drawdown calculated from measured depth to water (dtw)

GetK(T, T units, b, b units, output units)

Returns an estimate of hydraulic conductivity calculated by T/b.

Getloss(Q, Q units, C, C units, output units)

- Returns the well loss correction factor (s w).
- Getsl(screen top depth, screen top depth units, screen bottom depth, screen bottom depth units, dtw units, output units)

Returns the saturated screen length computed from field data

GetSpCap(Q, Q units, sm, sm units, output units)

Returns specific capacity.

- ppen(L, L units, b, b units, d, d units)
- Returns the partial penetration correction factor (s_p).

TGuess(well diam., diam. units, s_m, s_m units, t, t units, Q, Q units, S, s_w, s_w units, s_p, error tolerance, error units, max. steps, output units) Return an estimate of transmissivity.

wellstorage(well diam., diam. units, t, t units, T, T units)

Returns the text "pass" or "fail" based on a test for inappropriate effects of well bore storage.

References

1) Bradbury, K.B., and E.R. Rothschild, 1985. A computerized technique for estimating the hydraulic conductivity of aquifer from specific capacity data: Ground Water vol. 23, No. 2, pp. 240-246.

2) ASTM International, 2004. Standard Test Method for Determining Specific Capacity and Estimating Transmissivity at the Control Well, Standard D 5472-93, in Annual Book of ASTM Standards, Vol. 04.08 pp. 1279-1282.

Questions/Bugs, contact:

Michael Cobb, UW-Madison Department of Geology and Geophysics, cobb@geology.wisc.edu

			Damea Q		quiler, Nor	th Branch, win area	r	Г	
Unique Number	т	T units	T analytical method	Aquifer Thickness (ft)	Kh (ft/day)	Test Method	Aquifer	UTM E	UTM N
196274	450	ft^2/day	TGUESS	40	11 25	Specific Capacity	QBAA	498226	5039058
635118		ft^2/day	TGUESS	25		Specific Capacity	QBAA	498518	5040055
592602		ft^2/day		40		Specific Capacity	QBAA		
582658			TGUESS	40				498632 499032	5037652
		ft^2/day	TGUESS			Specific Capacity	QBAA	499032	5038335
		ft^2/day	TGUESS	38		Specific Capacity	QBAA		5037705
401041		ft^2/day	TGUESS	40		Specific Capacity	QBAA	497516	5038455
723636		ft^2/day	TGUESS	33		Specific Capacity	QBAA	498304	5039972
634730		ft^2/day	TGUESS	40		Specific Capacity	QBAA	498850	5037506
609614		ft^2/day	TGUESS	40		Specific Capacity	QBAA	498645	5038303
648862		ft^2/day	TGUESS	34		Specific Capacity	QBAA	498876	5037440
631243		ft^2/day	TGUESS	20		Specific Capacity	QBAA	498574	5037343
676809		ft^2/day	TGUESS	40		Specific Capacity	QBAA	498829	5037436
637970		ft^2/day	TGUESS	40		Specific Capacity	QBAA	498460	5040333
598048	2872	ft^2/day	TGUESS	40	71.8	Specific Capacity	QBAA	498399	5038966
653760	578	ft^2/day	TGUESS	31	18.66	Specific Capacity	QBAA	498585	5037967
687641	230	ft^2/day	TGUESS	40	5.76	Specific Capacity	QBAA	499181	5040301
577029	901	ft^2/day	TGUESS	40	22.52	Specific Capacity	QBAA	500157	5040507
743250	133	ft^2/day	TGUESS	11	12.08	Specific Capacity	QBAA	498338	5038233
523887	6951	ft^2/day	TGUESS	47	147.89	Specific Capacity	QBAA	499146	5038080
548322		ft^2/day	TGUESS	40		Specific Capacity	QBAA	498736	5040221
694483		ft^2/day	TGUESS	89		Specific Capacity	QBAA	499159	5038980
431738		ft^2/day	TGUESS	40		Specific Capacity	QBAA	500121	5040479
656439		ft^2/day	TGUESS	21		Specific Capacity	QBAA	498584	5037357
676819		ft^2/day	TGUESS	40		Specific Capacity	QBAA	499380	5038067
550632		ft^2/day	TGUESS	31		Specific Capacity	QBAA	499336	5038384
620344		-		43				499330	
		ft^2/day	TGUESS	43		Specific Capacity	QBAA		5037664
676821		ft^2/day	TGUESS			Specific Capacity	QBAA	498864	5037341
562762		ft^2/day	TGUESS	34		Specific Capacity	QBAA	498821	5037974
598047		ft^2/day	TGUESS	40		Specific Capacity	QBAA	498626	5038756
452262		ft^2/day	TGUESS	18		Specific Capacity	QBAA	498670	5040485
436594		ft^2/day	TGUESS	40		Specific Capacity	QBAA	499623	5040485
575644		ft^2/day	TGUESS	40		Specific Capacity	QBAA	498820	5037774
		ft^2/day	TGUESS	40		Specific Capacity	QBAA	498817	5039546
		ft^2/day	TGUESS	40		Specific Capacity	QBAA	499821	5039549
641068		ft^2/day	TGUESS	47		Specific Capacity	QBAA	498988	5037560
631543		ft^2/day	TGUESS	40	18.21	Specific Capacity	QBAA	498548	5037580
582657		ft^2/day	TGUESS	49	12.32	Specific Capacity	QBAA	499019	5038150
638933	319	ft^2/day	TGUESS	29	11.01	Specific Capacity	QBAA	498875	5037285
750853	505	ft^2/day	TGUESS	22	22.94	Specific Capacity	QBAA	499448	5038066
562384	1235	ft^2/day	TGUESS	40	30.87	Specific Capacity	QBAA	498863	5037929
631244		ft^2/day	TGUESS	26		Specific Capacity	QBAA	498630	5037387
648809		ft^2/day	TGUESS	40		Specific Capacity	QBAA	498604	5037295
448288		ft^2/day	TGUESS	30		Specific Capacity	QBAA	498572	5037908
701584		ft^2/day	TGUESS	40		Specific Capacity	QBAA	499775	5037594
648874		ft^2/day	TGUESS	39		Specific Capacity	QBAA	499063	5037503
562374		ft^2/day	TGUESS	40		Specific Capacity	QBAA	498866	5037859
706844		ft^2/day	TGUESS	92		Specific Capacity	QBAA	498800	5038991
641069		ft^2/day	TGUESS	47		Specific Capacity	QBAA	498900	5037512
635113		ft^2/day	TGUESS	20		Specific Capacity	QBAA	498900	5040330
		-							
712512		ft^2/day	TGUESS	21		Specific Capacity	QBAA	499837	5037259
653108		ft^2/day	TGUESS	40		Specific Capacity	QBAA	499936	5040510
620424	8854	ft^2/day	TGUESS	40	221.35	Specific Capacity	QBAA	498424	5038694

Regional Hydraulic Conductivity Data Burried Quaternary Aquifer, North Branch, MN area

					q	th Dranch, why area		,	
Unique Number	т	T units	T analytical method	Aquifer Thickness (ft)	Kh (ft/day)	Test Method	Aquifer	UTM E	UTM N
537809	401	ft^2/day	TGUESS	40	10.03	Specific Capacity	QBAA	499392	5038339
650479	1173	ft^2/day	TGUESS	40	29.32	Specific Capacity	QBAA	498330	5038679
630000	1544	ft^2/day	TGUESS	40	38.59	Specific Capacity	QBAA	498422	5038389
714530	3115	ft^2/day	TGUESS	24	129.79	Specific Capacity	QBAA	500023	5038309
550817	304	ft^2/day	TGUESS	34	8.95	Specific Capacity	QBAA	498675	5037727
656440	852	ft^2/day	TGUESS	34		Specific Capacity	QBAA	498723	5037402
648810	606	ft^2/day	TGUESS	29	20.9	Specific Capacity	QBAA	498882	5037386
637166	390	ft^2/day	TGUESS	40	9.74	Specific Capacity	QBAA	499860	5037553
537762	285	ft^2/day	TGUESS	20	14.23	Specific Capacity	QBAA	498272	5039494
680158	373	ft^2/day	TGUESS	38	9.81	Specific Capacity	QBAA	499015	5037490
670616	367	ft^2/day	TGUESS	34	10.8	Specific Capacity	QBAA	498975	5037460
626935		ft^2/day	TGUESS	28	31.07	Specific Capacity	QBAA	498627	5040099
676482	246	ft^2/day	TGUESS	40	6.14	Specific Capacity	QBAA	498519	5038328
714544	7217	ft^2/day	TGUESS	49	147.28	Specific Capacity	QBAA	498999	5038008
642633	667	ft^2/day	TGUESS	46	14.51	Specific Capacity	QBAA	498934	5038396
164698	9941	ft^2/day	TGUESS	79	125.84	Specific Capacity	QBAA	499867	5037535
636073	1055	ft^2/day	TGUESS	40	26.38	Specific Capacity	QBAA	499382	5039347
720477	592	ft^2/day	TGUESS	40	14.81	Specific Capacity	QBAA	498359	5040097
656441		ft^2/day	TGUESS	29		Specific Capacity	QBAA	498664	5037347
542625	760	ft^2/day	TGUESS	40	19.01	Specific Capacity	QBAA	498670	5037893
626578	1434	ft^2/day	TGUESS	48	29.88	Specific Capacity	QBAA	499001	5038275
676820	901	ft^2/day	TGUESS	40	22.52	Specific Capacity	QBAA	498788	5037320
542591	568	ft^2/day	TGUESS	40	14.19	Specific Capacity	QBAA	498599	5037650
690008	528	ft^2/day	TGUESS	35		Specific Capacity	QBAA	498371	5040008
631224	791	ft^2/day	TGUESS	40	19.77	Specific Capacity	QBAA	498661	5037437
565325	1179	ft^2/day	TGUESS	22	53.61	Specific Capacity	QBAA	498713	5037906
577039	548	ft^2/day	TGUESS	29	18.9	Specific Capacity	QBAA	499980	5037164
644684	592	ft^2/day	TGUESS	40	14.79	Specific Capacity	QBAA	498674	5037578
720543	290	ft^2/day	TGUESS	40	7.24	Specific Capacity	QBAA	498281	5039497
653791		ft^2/day	TGUESS	40		Specific Capacity	QBAA	498751	5037495
569998		ft^2/day	TGUESS	32		Specific Capacity	QBAA	498812	5037909
657009		ft^2/day	TGUESS	40		Specific Capacity	QBAA	499269	5038261
676808		ft^2/day	TGUESS	40		Specific Capacity	QBAA	498636	5037528
550631		ft^2/day	TGUESS	37	7.55	Specific Capacity	QBAA	499277	5038345
136128		ft^2/day	TGUESS	40		Specific Capacity	QBAA	498116	5038075
582662		ft^2/day	TGUESS	49		Specific Capacity	QBAA	499024	5038074
		ft^2/day	TGUESS	40		Specific Capacity	QBAA	498622	5038768

Regional Hydraulic Conductivity Data Burried Quaternary Aquifer, North Branch, MN area

Min	4.6
Max	221.4
Average	30.3
Geomean	20.3

·	966-01 2001 10.	01	0.00) ex m ₋	JUCINICU				004110	0 r.02/00
FRÓ	M : NOPTH BPANCH	i wateq & N	light Dorf	, H (PHONE NO. : 6511 Branch Wa	6744254 Hen Of	high	Sep.	07 2007	10:50AM P2 ,
			WEL	ı⊥ #_	4					
					2004		.			
۲	WELL DIA	1811		DEP	гн <u>240</u>	WELL:	SCREEN	X	OP	EN HOLE
	ORIGINAL S.W.	ь3	3_	ORIG	g. p.l. <u>78</u>	ORIG. (5.P.M	320	ORI	G.S.C
	DAY/TIMÉ	WATER AT REST/SWL	QPM	184	Амря	VOLTAGE	PUMPING WTR LVL	DRAW DOWN	SPECIFIC CAPACITY	WATER COLOR/ BAND
	9-4-07 14317	.35	325	50	40		76	ИB		
WHOU A	9-6-07 9110		325	48	40		79	43		
kut (9-6-07 1210	34	325	218	40 40		79	45		
K. (4-1-07 1720	32	3-3	50	40		77,5	45.D		
	9-7-07 8:30	34	3.25	48			78	44	 	
			ļ. 		-		<u> </u>	ļ		
	1	1	11	L				1	1	1

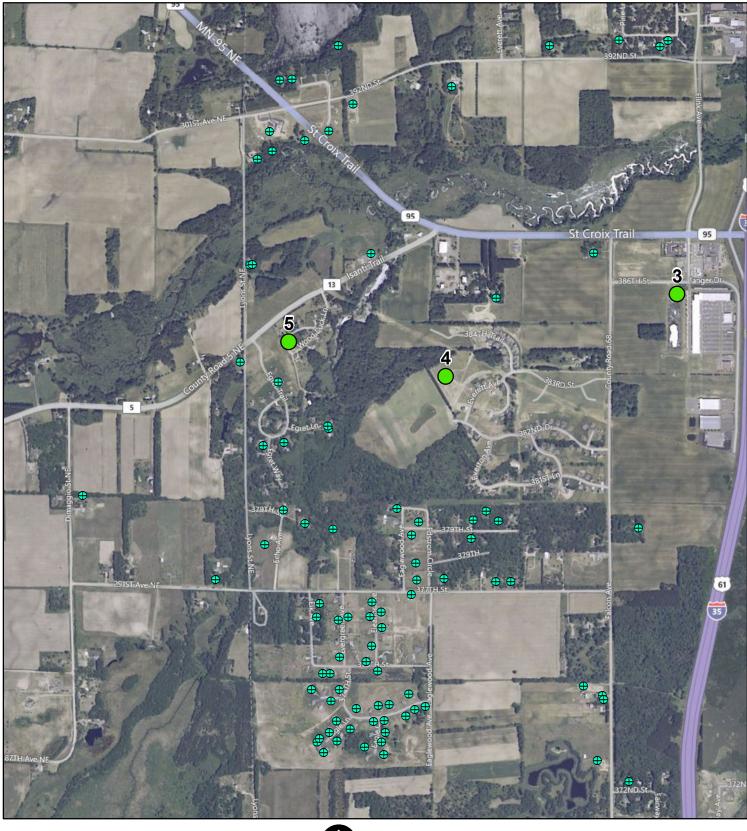
.

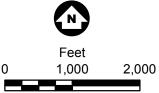
.

Ţ

DATE

COMMENTS


ć


: 74

Pumping Water Level minus Static Water Level equals X (PWL - SWL = X) Example: X = Draw Down in Feet Gallons Per Minute divided by Draw Down equals Specific Capacity or Gallons of Water Pumped Per Foot of Draw Down (GPM + Draw Down = Specific Capacity)

Information should be recorded a minimum of 10 to 15 minutes after start-up of pump.

BERGERSON-CASWELL, INC. 1-800-328-6188

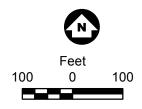
North Branch Wells

Quaternary Wells with Specific Capacity Data

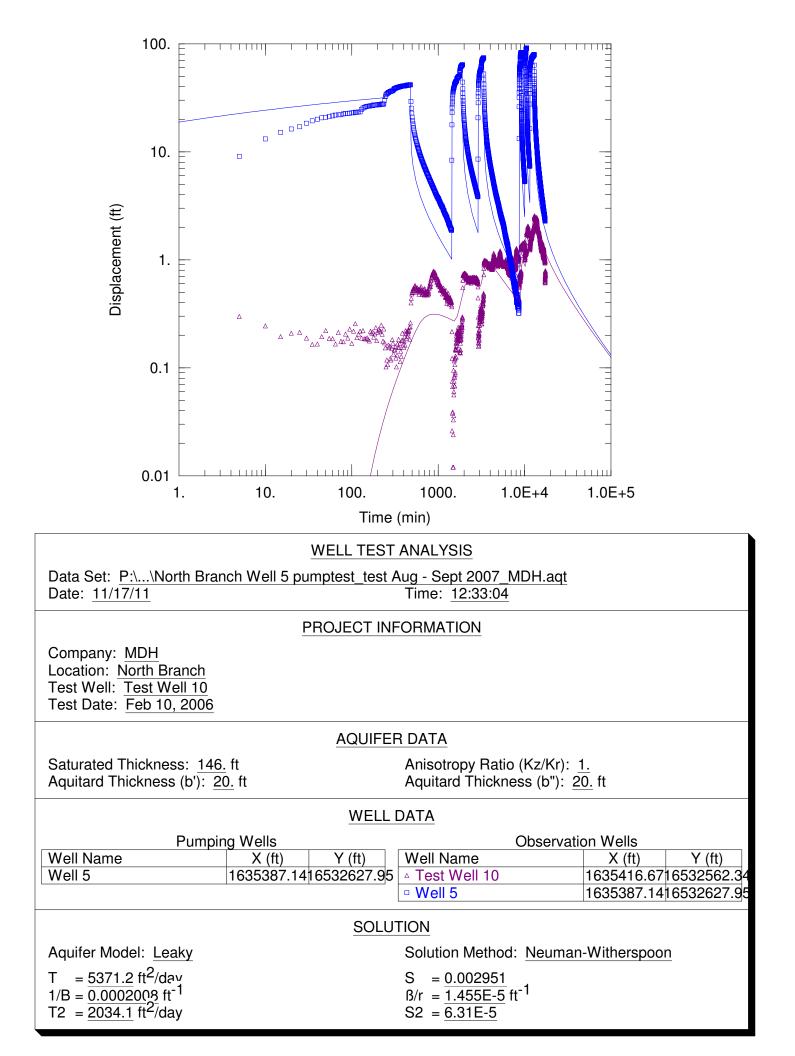
Quaternary Wells with Specific Capactiy Data North Branch Water and Light

Environmental Health Division Drinking Water Protection Section Source Water Protection Unit P.O. Box 64975 St. Paul, Minnesota 55164-0975

Pub	Public Water Supply ID:1300			1	PWS Name:	North Branch Water and Light					
					Contact						
		Aquifer Test Co	ntact:	John Greer							
Con	tract	or Name and Ad	dress:	Barr Engin	Barr Engineering						
				4700 West 77 th Street							
City, State, Zip:				Minneapoli	s, MN 55435-48	03					
	Pł	ione and Fax Nui	mber:	952-832-269	91 (phone) 952-8	832-2601 (fax)					
Proposed Aquifer Test Method											
X	X1)An existing pumping test that meets the requirements of wellhead protection rule part 4720.5520 and that was previously conducted on a public well in your water supply system.										
	2) An existing pumping test that meets the requirements of wellhead protection rule part 4720.5520 and that was previously conducted on another well in a hydrogeologic setting determined by the department to be equivalent.										
	3)					well in your water supply system and that (wellhead protection rule part 4720.5520).					
	4)					well in your water supply system and that s (wellhead protection rule part 4720.5530).					
	 5) An existing pumping test that does not meet the requirements of wellhead protection rule part 4720.5520 and that was previously conducted on: 1) a public water supply well or 2) another well in a hydrogeologic setting determined by the department to be equivalent. 										
	6)	An existing specific capacity test or specific capacity test for the public water supply well.									
	7)	An existing publi	ished tr	ansmissivity	value.						
		all pumping test d f those specified ir			•	alue when the aquifer test method proposed					


To request this document in another format, please call the Section Receptionist at (651) 201-4700 or Division TTY at (651) 201-5797.

	Test Des	scription						
Pumped Well Unique No:	749383 (North Branch #5)	Test Duration (Hours):	192 (Multiple-steps)					
Location	T_{25} DO 13W G_{-10} CDD A D A	Pump Type:						
(Township, Range, Section, Quarters):	T35 R21W Sec19 CBBADA	Discharge Rate:	Variable (0-2000 gpm)					
Number of Observation Wells:	1 (TW10, 706835)	Flow Rate Measuring Device Type:	Bernoulli Tube					
X Confined	Unconfined							
• You must include a r	map showing the location of the p	umping well and observati	on well(s).					
	Rational for Prop	osed Test Method						
Briefly describe the r	ationale for method selected:							
This pumping test has multiple steps with multiple recovery periods. The last step was 24 hours in length. Data was analyzed by MDH staff. This is the most complete and longest test available for the Mt Simon- Hinckley aquifer in the area. The monitoring well was also open to the Tunnel City – Wonewoc aquifer and allows for estimation of the leakage through the Eau Claire Formation. Transmissivity as determined by MDH is 5370 ft ² /day Using a aquifer thickness of 150 feet results in a hydraulic conductivity of 35.8 ft/day								


List all unique numbers of wells that this Aquifer Test Plan applies to:								
522767 (Well 3)								
749383 (Well 5)								

Reviewed by:	Approved:	Yes	No	Approval Date:
--------------	-----------	-----	----	----------------

Well 5 Pumping Test North Branch Water and Light

Environmental Health Division Drinking Water Protection Section Source Water Protection Unit P.O. Box 64975 St. Paul, Minnesota 55164-0975

Aquifer Test Plan

Pub	lic W	ater Supply ID:	13001	1	PWS Name:	North Branch Water and Light			
					Contact				
		Aquifer Test Co	ntact:	John Greer	•				
Con	tract	tor Name and Ad	dress:	Barr Engin	eering				
				4700 West 7	77 th Street				
		City, State	e, Zip:	Minneapoli	is, MN 55435-480	03			
	Pl	hone and Fax Nu	mber:	952-832-26	91 (phone) 952-8	832-2601 (fax)			
				Proposed A	Aquifer Test M	Iethod			
	1)				•	of wellhead protection rule part 4720.5520 your water supply system.			
	2) and		y cond	ucted on anoth		of wellhead protection rule part 4720.5520 rogeologic setting determined by the			
	3)				• •	well in your water supply system and that (wellhead protection rule part 4720.5520).			
	4)					well in your water supply system and that s (wellhead protection rule part 4720.5530).			
	5) An existing pumping test that does not meet the requirements of wellhead protection rule part 4720.5520 and that was previously conducted on: 1) a public water supply well or 2) another well in a hydrogeologic setting determined by the department to be equivalent.								
X	 An existing specific capacity test or specific capacity test for the public water supply well. An existing published transmissivity value. 								
	 Include all pumping test data and the estimated transmissivity value when the aquifer test method proposed is one of those specified in Nos. 1, 2, 5, 6, or 7 listed above. 								

To request this document in another format, please call the Section Receptionist at (651) 201-4700 or Division TTY at (651) 201-5797.

	Test De	scription	
Pumped Well Unique No:	112244 (North Branch #2)	Test Duration (Hours):	Unknown
Location		Pump Type:	
(Township, Range, Section, Quarters):	T35 R21W Sec21 BBCDBA	Discharge Rate:	350 gpm
Number of Observation Wells:	0	Flow Rate Measuring Device Type:	
X Confined	Unconfined		
• You must include a	map showing the location of the p	oumping well and observati	on well(s).
	Rational for Prop	oosed Test Method	
Briefly describe the r	ationale for method selected:		
well in the area open specific capacity for t Using the TGuess Me	a for the Fond du lac aquifer (n to this aquifer is North Bran that well is incongruous. ethod (Bradbury and Rothschil a hydraulic conductivity of 4.4	ch Well 1 (217922) and a d, 1985) the transmissivit	as noted on the well log the

List all unique numbers of wells that this Aquifer Test Plan applies to:								
217922 (Well 1)								
112244 (Well 2)								

Reviewed by:	Approved:	Yes	No	Approval Date:
--------------	-----------	-----	----	----------------

Worksheet for Estimating Transmissivity and Hydraulic Conductivity from Specific Capacity Test Data Explanation and notes attached.

Maximum iterations	100
Error tolerance (as drawdown)	0.001 feet

_		Field Da	nta						Estimated	l Paramete	ers	Calculated	Results						Diagnostics	s				
- [Depth t	o Water			Screene	d Interval					Saturated		Partial				Sol	ution Integri	ty	Se	nsitivity of T	<i>.</i> :
						Mean			Storage	Well loss	Aquifer	Measured	Screen		Penetration						Well Bore	to S at		
		Well			Test	Pumping	Depth to	Depth to	Coeff.	Coeff.	Thickness	Drawdown	Length	Well loss	Parameter	Specific	Transmissivity	Conductivity	Calculated	Error as	Storage	± 1 factor of	to s _w at	to b at
	Location	Diam.	Initial	Final	Duration	Rate	Тор	Bottom	(S)	(C)	(b)	(s _m)	(Ľ)	(s _w)	(S _p)	Capacity	(T)	(K)	Drawdown	Drawdown	Test	10	10% of s_m	± 25%
ſ		inches	feet	feet	hours	gpm	feet	feet	-	sec^2/ft^5	feet	feet	feet	feet	-	gpm/ft	sq ft/sec	ft/day	feet			sq ft/sec	sq ft/sec	sq ft/sec
ſ	North Branch Well 2	10	32.0	215.0	12	350.0	261.0	360.0	0.001	0	100	183.00	99.0	0.0E+00	0.03	1.91	5.1E-03	4.4E+00	183.00	0.00%	pass	8.4E-04	6.0E-04	1.2E-03

Note: Test duration assumed to be 12 hours

References:

Bradbury, K.B., and E.R. Rothschild, 1985. A computerized technique for estimating the hydraulic conductivity of aquifer from specific capacity data: Ground Water vol. 23, No. 2, pp. 240-246.

ASTM International, 2004. Standard D 5472-93, in Annual Book of ASTM Standards, Vol. 04.08 pp. 1279-1282.

Worksheet for Estimating Transmissivity and Hydraulic Conductivity from Specific Capacity Test Data

Explanation

This spreadsheet estimates transmissivity and hydraulic conductivity following the method of Bradbury and Rothschild (1985). The method applies the Cooper-Jacob approximation of the Theis equation, with corrections for partial penetration and well loss, as indicated in equations 1-4.

Equation 1 is the modified Cooper-Jacob approximation of the Theis equation for transient radial flow to a well in a confined aquifer. Equation 2 calculates well loss, based on a correction factor (C), which must be estimated or determined by alternate test methods. Equation 3 calculates a unitless partial penetration correction factor (see assumptions below), employing the function G(L/b), approximated in Equation 4 with a polynomial best-fit.

The estimates of transmissivity and conductivity yielded by this method are imperfect, and presumed to be less realistic than the estimates that can be made from time/drawdown or distance/drawdown tests, if those data are available. This solution method includes several assumptions that should limit the confidence placed in its estimates:

a) the tested aquifer is confined, non-leaky, homogeneous and isotropic;

b) the storage coefficient of the aquifer is known;

c) the well loss is known;

d) the effective aquifer thickness is known.

In most cases, the storage coefficient, well loss, and aquifer thickness can only be estimated. The error introduced is non-negligible, but can be loosely bracketed. The diagnostic section of the worksheet includes a limited sensitivity analysis.

If the user has little control on well loss, or aquifer thickness, the well loss and partial penetration correction terms may be removed, respectively, by setting the well loss coefficient (C) equal to zero, and the aquifer thickness (b) equal to the saturated screen interval. Note that the partial penetration correction factor assumes isotropic conditions ($K_h = K_2$), and gives a value of T extrapolated from the screened interval to the full aquifer thickness. If the aquifer is anisotropic, this correction is inappropriate.

Eq. 1 $T = \frac{Q}{4\pi (s_m - s_w)} \left[\ln \left(\frac{2.25Tt}{r_w^2 S} \right) + 2s_p \right]$

Eq. 2 $s_w = CQ^2$

Eq. 3
$$s_p = \frac{1 - L/b}{L/b} \left(\ln \frac{b}{r_w} - G(L/b) \right)$$

Eq. 4 $G(L/b) = 2.948 - 7.363(L/b) + 11.447(L/b)^2 - 4.675(L/b)^3$

b - aquifer thickness	s _m - measured drawdown
C - well loss coefficient	s _w - well loss
L - screen length	sp - partial penetration parameter
Q - mean pumping rate	S - storativity
rw - effective radius	T - transmissivity
	t numerica duration

t - pumping duration

Usage Notes

Units

The user may chose any combination of units for field data, estimated parameters and calculated results by changing the units shown in the column headers. Each of these cells has an embedded pull down list from which to chose. Only the listed options will work, because the embedded functions look for specific text strings. The units of the diagnostic columns are linked to the calculated results, and shouldn't be manually changed.

Input

Field data may be pasted in or entered directly. The units header should be changed to agree with the data. All depth values are assumed to be from a common reference point (e.g., ground surface).

Calculated Results

The calculated results cells all make use of user-defined functions written in Visual Basic for Applications. The functions and their arguments are listed to the right. The code may be viewed by opening Excel's Visual Basic Editor. Cells containing these functions may be drag-filled or copied down their respective columns to extend the table. Changing the units in the column header will automatically change the output units.

Diagnostics

The difference between calculated drawdown the measured drawdown is a metric for assessing the convergence of the solution. If the error is unacceptably high, the maximum iterations and error tolerance may be adjusted in the fields above the table. The well bore storage test checks that the specific capacity test rate and duration were adequate to negate the influence of water removed from the well casing on the measured drawdown. The test applies criterion that the test duration be longer than 25°r_w²/T (ASTM, 2004). Note that this check assumes well radius and riser radius are equal.

The worksheet assesses the sensitivity of transmissivity to variation in the storage coefficient (S), to the degree of well loss (s_w) , and to the effective isotropic aquifer thickness (b). The resulting values shown indicate the variance of T from the actual estimate, when the target parameter is adjusted as indicated.

Functions and arguments employed in this workbook

CalcDD(TGuess(well diam., diam. units, t, t units, Q, Q units, S, s_w, s_w units, s_p, T, T units, output units) Beturns drawdown calculated from an estimated T.

Getdd(dtw initial, dtw initial units, dtw final, dtw final units, output units)

Returns drawdown calculated from measured depth to water (dtw)

GetK(T, T units, b, b units, output units)

Returns an estimate of hydraulic conductivity calculated by T/b.

Getloss(Q, Q units, C, C units, output units)

- Returns the well loss correction factor (s w).
- Getsl(screen top depth, screen top depth units, screen bottom depth, screen bottom depth units, dtw units, output units)

Returns the saturated screen length computed from field data

GetSpCap(Q, Q units, sm, sm units, output units)

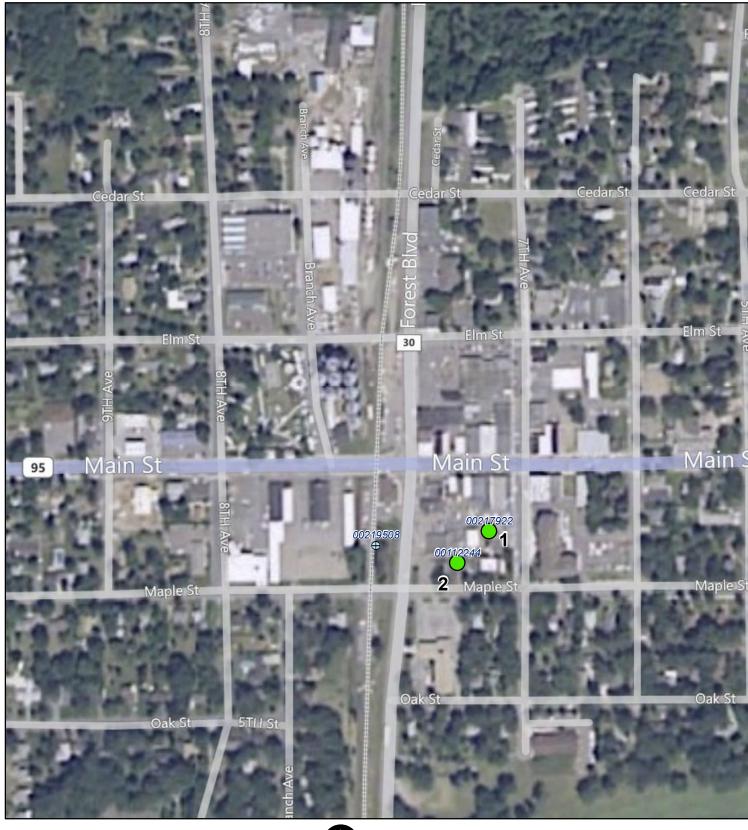
Returns specific capacity.

- ppen(L, L units, b, b units, d, d units)
- Returns the partial penetration correction factor (s_p).

TGuess(well diam., diam. units, s_m, s_m units, t, t units, Q, Q units, S, s_w, s_w units, s_p, error tolerance, error units, max. steps, output units) Return an estimate of transmissivity.

wellstorage(well diam., diam. units, t, t units, T, T units)

Returns the text "pass" or "fail" based on a test for inappropriate effects of well bore storage.


References


1) Bradbury, K.B., and E.R. Rothschild, 1985. A computerized technique for estimating the hydraulic conductivity of aquifer from specific capacity data: Ground Water vol. 23, No. 2, pp. 240-246.

2) ASTM International, 2004. Standard Test Method for Determining Specific Capacity and Estimating Transmissivity at the Control Well, Standard D 5472-93, in Annual Book of ASTM Standards, Vol. 04.08 pp. 1279-1282.

Questions/Bugs, contact:

Michael Cobb, UW-Madison Department of Geology and Geophysics, cobb@geology.wisc.edu

North Branch Wells

Other Wells - County Well Index

Fond du Lac Aquifer Wells North Branch Water and Light

Appendix C

MDH Well Vulnerability Assessments

625 Robert St. N. St. Paul MN 55155 P.O. Box 64975 St. Paul MN 55164 - 0975

MINNESOTA DEPARTMENT OF HEALTH SECTION OF DRINKING WATER PROTECTION SWP Vulnerability Rating

PWSID: 1130011 TIER: 5 SYSTEM NAME: North Branch WHP RANK: WELL NAME: Well #1 UNIQUE WELL #: 00217922 COUNTY: Chisago TOWNSHIP NUMBER: 35 RANGE: 21 W SECTION: 21 QUARTERS: BBCC CRITERIA DESCRIPTION POINTS Aquifer Name(s) Mt.Simon-Fond Du Lac **DNR Geologic Sensitivity Rating** : Verv low 15 5 L Score Geologic Data From Well Record Year Constructed 1947 ٠ Construction Method Cable Tool/Bored . 0 Casing Depth 263 5 Well Depth 762 Casing grouted into borehole? Unknown 0 Cement grout between casings? Not applicable 0 All casings extend to land surface? Yes 0 Gravel - packed casings? No 0 Wood or masonry casing? No 0 Holes or cracks in casing? No Ű. Isolation distance violations? Û **Pumping Rate** 350 5 Pathogen Detected? 0 Surface Water Characteristics? 0 Maximum nitrate detected 0 ~ 4 07/11/1991 Maximum tritium detected 0 Unknown Non-THMS VOCs detected? Ö Pesticides detected? Û Carbon 14 age : М 0 Wellhead Protection Score 25 Wellhead Protection Vulnerability Rating : NOT VULNERABLE

Vulnerability Overridden

COMMENTS CMTS-PYFL

Date Report Generated: 11/17/2010

625 Robert St. N. St. Paul MN 55155 P.O. Box 64975 St. Paul MN 55164 - 0975

MINNESOTA DEPARTMENT OF HEALTH SECTION OF DRINKING WATER PROTECTION SWP Vulnerability Rating

PWSID: 1130011 TIER: 5 WHP RANK: SYSTEM NAME: North Branch WELL NAME: Well #2 UNIQUE WELL #: 00112244 TOWNSHIP NUMBER: 35 RANGE: 21 W SECTION: 21 COUNTY: Chisago QUARTERS: BBCC **CRITERIA** DESCRIPTION POINTS Mt.Simon-Fond Du Lac Aquifer Name(s) **DNR Geologic Sensitivity Rating** : Very low 15 5 L Score Geologic Data From Well Record Year Constructed 1978 • Construction Method ÷ Cable Tool/Bored 0 Casing Depth 261 5 ÷ 360 Well Depth Casing grouted into borehole? Yes 0 Cement grout between casings? Unknown 5 All casings extend to land surface? Yes 0 Gravel - packed casings? No 0 Wood or masonry casing? No 0 Holes or cracks in casing? No 0 Isolation distance violations? 0 350 Pumping Rate 5 Pathogen Detected? 0 Surface Water Characteristics? 0 Maximum nitrate detected 0 ÷ 03/07/1989 <.4 Maximum tritium detected ÷ 0 Unknown Non-THMS VOCs detected? Ũ Pesticides detected? 0 Carbon 14 age Unknown 0 Wellhead Protection Score : 30 Wellhead Protection Vulnerability Rating : NOT VULNERABLE

Vulnerability Overridden

÷

COMMENTS CMTS-PYFL

MINNESOTA DEPARTMENT OF HEALTH SECTION OF DRINKING WATER PROTECTION SWP Vulnerability Rating

625 Robert St. N. St. Paul MN 55155 P.O. Box 64975 St. Paul MN 55164 - 0975

PWSID: 1130011 SYSTEM NAME: North Branch WELL NAME: Well #3			TIER: 5 WHP RANK: UNIQUE WELL #: 00522767
COUNTY: Chisago	TOWNS	HIP NUMBER: 35 RANGE: 21 W	SECTION: 20 QUARTERS: BCDA
CRITERIA		DESCRIPTION	POINTS
Aquifer Name(s)	:	Mt. Simon	
DNR Geologic Sensitivity Rating	:	Low	20
L Score	:	2	
Geologic Data From	÷	Well Record	
Year Constructed	:	1993	
Construction Method	:	Cable Tool/Bored	0
Casing Depth	:	186	10
Well Depth	:	304	
Casing grouted into borehole?		No	0
Cement grout between casings?		Not applicable	0
All casings extend to land surface?		Yes	0
Gravel - packed casings?		No	0
Wood or masonry casing?		No	0
Holes or cracks in casing?		Unknown	0
solation distance violations?			0
Pumping Rate	:	500	5
Pathogen Detected?			NOT VULNERABLE
Surface Water Characteristics?			NOT VULNERABLE
Maximum nitrate detected	:	<.05 05/07/1997	NOT VULNERABLE
Maximum tritium detected	:	<.8 03/15/2006	NOT VULNERABLE
Non-THMS VOCs detected?			0
Pesticides detected?			0
Carbon 14 age	:	Unknown	0
Wellhead Protection Score		alan dan kanan dan menerakan kanan munakan karan dari karan dari karan dari karan dan karan dan karan dan karan	35
Wellhead Protection Vulnerability Rat	ing :		NOT VULNERABLE

Vulnerability Overridden

COMMENTS

This well is classified as drawing from the CMTS and PMFL aquifers according to the MGS.

2

MINNESOTA DEPARTMENT OF HEALTH SECTION OF DRINKING WATER PROTECTION SWP Vulnerability Rating

625 Robert St. N. St. Paul MN 55155 P.O. Box 64975 St. Paul MN 55164 - 0975

PWSID: 1130011 SYSTEM NAME: North Branch WELL NAME: Well #4				UNIC	TIER: 5 WHP RANK: NE WELL #: 00706844
COUNTY: Chisago	TOWNS	HIP NUMBER:	RANGE:	SECTION:	QUARTERS:
CRITERIA		DESCRIPTI	<u>ON</u>	<u></u>	POINTS
Aquifer Name(s)	:	Quaternary	Buried Artesian		
DNR Geologic Sensitivity Rating	:	Low			0 .
L Score	:	6			
Geologic Data From	:	Well Record			
Year Constructed	:	2004			
Construction Method	;	Cable Tool/E	Bored		0
Casing Depth	*	171			10
Vell Depth	:	240			
asing grouted into borehole?		Yes			0
Cement grout between casings?		Unknown			5
All casings extend to land surface?		Yes			0
Gravel - packed casings?		No			0
Vood or masonry casing?		No			0
foles or cracks in casing?		Unknown			0
solation distance violations?					0
Pumping Rate	;	325			5
athogen Detected?					NOT VULNERABLE
Surface Water Characteristics?					NOT VULNERABLE
Aaximum nitrate detected	:	<.05 05/2	2/2006		NOT VULNERABLE
faximum tritium detected	;	<.8 03/08/	/2006		NOT VULNERABLE
Ion-THMS VOCs detected?					0
Pesticides detected?					0
Carbon 14 age	:	Unknown			0
Vellhead Protection Score					20
Wellhead Protection Vulnerability Rat	ing :				NOT VULNERABLE

Vulnerability Overridden

:

COMMENTS

P.O. Box 64975 St. Paul MN 55164 - 0975

MINNESOTA DEPARTMENT OF HEALTH SECTION OF DRINKING WATER PROTECTION SWP Vulnerability Rating

PWSID: 1130011 TIER: 5 SYSTEM NAME: North Branch WHP BANK: WELL NAME: Well #5 UNIQUE WELL #: 00749383 COUNTY: Chisago TOWNSHIP NUMBER: RANGE: SECTION: QUARTERS: DESCRIPTION CRITERIA POINTS Aquifer Name(s) . Mt. Simon DNR Geologic Sensitivity Rating Very low 15 7 L Score Geologic Data From Other Year Constructed 2007 Construction Method Cable Tool/Bored Û Casing Depth 329 5 Well Depth 467 Yes Casing grouted into borehole? 0 Cement grout between casings? Yes 0 All casings extend to land surface? Yes 0 Gravel - packed casings? No 0 Wood or masonry casing? No 0 Holes or cracks in casing? No Õ Isolation distance violations? Ω **Pumping Rate** 1200 20 Pathogen Detected? NOT VULNERABLE Surface Water Characteristics? NOT VULNERABLE Maximum nitrate detected ; 0 Unknown Maximum tritium detected NOT VULNERABLE <.8 05/06/2009 Non-THMS VOCs detected? 0 Pesticides detected? 0 Carbon 14 age Unknown ÷ 0 Wellhead Protection Score ÷ 40 Wellhead Protection Vulnerability Rating : NOT VULNERABLE

Vulnerability Overridden

COMMENTS

Used geology information from test well 706835. Previous tritium result of <0.8 TU on 12/4/2008.

625 Robert St. N. St. Paul MN 55155 P.O. Box 64975 St. Paul MN 55164 - 0975

MINNESOTA DEPARTMENT OF HEALTH SECTION OF DRINKING WATER PROTECTION SWP Vulnerability Rating

PWSID: 1130011 SYSTEM NAME: North Branch WELL NAME: Well #6					TIER: 5 WHP RANK: DUE WELL #: 00593584
COUNTY: Chisago	TOWNS	HIP NUMBER:	RANGE:	SECTION:	QUARTERS:
CRITERIA		DESCRIPTION		· · · · · · · · · · · · · · · · · · ·	POINTS
Aquifer Name(s)	:	Mid.Proterozoic S	Sedimentary		
DNR Geologic Sensitivity Rating	:	Medium			25
L Score	;	5			
Geologic Data From	:	Well Record			
Year Constructed	:	1999			
Construction Method	:	Rotary/Drilled			0
Casing Depth	:	300			5
Well Depth	:	410			
Casing grouted into borehole?		Yes			0
Cement grout between casings?		Not applicable			0
All casings extend to land surface?		Yes			0
Gravel - packed casings?		No			0
Wood or masonry casing?		No			0
Holes or cracks in casing?		Unknown			0
Isolation distance violations?					0
Pumping Rate	:	400			5
Pathogen Detected?					0
Surface Water Characteristics?					0
Maximum nitrate detected	:	Unknown			0
Maximum tritium detected	:	Unknown			0
Non-THMS VOCs detected?					0
Pesticides detected?					0
Carbon 14 age	:	Unknown			0
Wellhead Protection Score Wellhead Protection Vulnerability Rati	: ng :		991	99999999999999999999999999999999999999	35 NOT VULNERABLE

Vulnerability Overridden

COMMENTS

Appendix D

Summary of Fracture Flow Capture Zone Calculations

Well 1 (unique #217922)

Calculation for Ratio of Well Discharge to the Discharge Vector (Q/Qs)

See: Appendix 2 of Guidance for Delineating Wellhead Protection Area in Fractured and Solution-Weathered Bedrock in Minnesota (MDH, 2005)

If Q/Qs is less than 3000 m then delineation Technique 2 should be used: Calculated Fixed Radius with An Upgradient Extension

Input variables	
Well Discharge, Q (gpm)	304
Aquifer Thickness, H (ft)	200
Aquifer Hydraulic Conductivity K (m/day)	1.3
Hydraulic Gradient, i	0.0037191

Calculated Q/Qs (m) 5623

Calculated Fixed Radius (m)

562

Volume (m³)

60,493,520

Equation listed in Appendix 2 of Guidance for Delineating Wellhead Protection Area in Fractured and Solution-Weathered Bedrock in Minnesota (MDH, 2005)

	$Q\left(\frac{1ft^3}{7.48gal}\right)\left(\frac{1440\min}{1day}\right)\left(\frac{0.0283m^3}{1ft^3}\right)$
$Q^{\prime}Qs =$	$(H)\left(\frac{0.3048m}{1ft}\right)(K)(i)$

Calculation for Fixed Radius with No Upgradient Extension

See method 1 of Guidance for Delineating Wellhead Protection Area in Fractured and Solution-Weathered Bedrock in Minnesota (MDH, 2005)

Input Variables	
Well Pumping Rate m ³ /day	1657
Pumping Period (years)	10
Effective porosity, n	0.1
Thickness of saturated portion of aquifer, L	
(m)	61.0

Where:

Q = Well Discharge (L^3/T) =(Well pumping rate)(pumping time period)

n = effective porosity

L = thickness of saturated portion of aquifer (L) note: lesser of open borehole or 200 ft

Well 2 (unique #112244)

Calculation for Ratio of Well Discharge to the Discharge Vector (Q/Qs)

See: Appendix 2 of Guidance for Delineating Wellhead Protection Area in Fractured and Solution-Weathered Bedrock in Minnesota (MDH, 2005)

If Q/Qs is less than 3000 m then delineation Technique 2 should be used: Calculated Fixed Radius with An Upgradient Extension

Input variables	
Well Discharge, Q (gpm)	95
Aquifer Thickness, H (ft)	99
Aquifer Hydraulic Conductivity K (m/day)	1.3
Hydraulic Gradient, i	0.0037191

Calculated	Q/Qs (m)
3560	

Calculated Fixed Radius (m)

447

Volume (m³)

18,957,217

Equation listed in Appendix 2 of Guidance for Delineating Wellhead Protection Area in Fractured and Solution-Weathered Bedrock in Minnesota (MDH, 2005)

	$Q\left(\frac{1ft^3}{7.48gal}\right)\left(\frac{1440\min}{1day}\right)\left(\frac{0.0283m^3}{1ft^3}\right)$
$Q^{\gamma}Qs =$	$(H)\left(\frac{0.3048m}{1ft}\right)(K)(i)$

Calculation for Fixed Radius with No Upgradient Extension

See method 1 of Guidance for Delineating Wellhead Protection Area in Fractured and Solution-Weathered Bedrock in Minnesota (MDH, 2005)

Input Variables	
Well Pumping Rate m ³ /day	519
Pumping Period (years)	10
Effective porosity, n	0.1
Thickness of saturated portion of aquifer, L	
(m)	30.2

Where:

Q = Well Discharge (L^3/T) =(Well pumping rate)(pumping time period)

n = effective porosity

Well 3 (unique #522767)

Calculation for Ratio of Well Discharge to the Discharge Vector (Q/Qs)

See: Appendix 2 of Guidance for Delineating Wellhead Protection Area in Fractured and Solution-Weathered Bedrock in Minnesota (MDH, 2005)

If Q/Qs is less than 3000 m then delineation Technique 2 should be used: Calculated Fixed Radius with An Upgradient Extension

Input variables	
Well Discharge, Q (gpm)	246
Aquifer Thickness, H (ft)	118
Aquifer Hydraulic Conductivity K (m/day)	10.9
Hydraulic Gradient, i	0.0023265

Calculated Q/Qs (m) 1470

Calculated Fixed Radius (m)

305

Volume (m³)

10,499,079

Equation listed in Appendix 2 of Guidance for Delineating Wellhead Protection Area in Fractured and Solution-Weathered Bedrock in Minnesota (MDH, 2005)

Q/Qs =	$Q\left(\frac{1ft^3}{7.48gal}\right)\left(\frac{1440\min}{1day}\right)\left(\frac{0.0283m^3}{1ft^3}\right)$
	$(H)\left(\frac{0.3048m}{1ft}\right)(K)(i)$

Calculation for Fixed Radius with No Upgradient Extension

See method 1 of Guidance for Delineating Wellhead Protection Area in Fractured and Solution-Weathered Bedrock in Minnesota (MDH, 2005)

Input Variables	
Well Pumping Rate m ³ /day	1340
Pumping Period (years)	5
Effective porosity, n	0.233
Thickness of saturated portion of aquifer, L	
(m)	36.0

Where:

Q = Well Discharge (L^3/T) =(Well pumping rate)(pumping time period)

n = effective porosity

Well 4 (unique #706844)

Calculation for Ratio of Well Discharge to the Discharge Vector (Q/Qs)

See: Appendix 2 of Guidance for Delineating Wellhead Protection Area in Fractured and Solution-Weathered Bedrock in Minnesota (MDH, 2005)

If Q/Qs is less than 3000 m then delineation Technique 2 should be used: Calculated Fixed Radius with An Upgradient Extension

Input variables	
Well Discharge, Q (gpm)	155
Aquifer Thickness, H (ft)	60
Aquifer Hydraulic Conductivity K (m/day)	10.9
Hydraulic Gradient, i	0.0023265

Calculated	Q/Qs (m)
1824	

Calculated Fixed Radius (m)

340

Volume (m³)

6,625,374

Equation listed in Appendix 2 of Guidance for Delineating Wellhead Protection Area in Fractured and Solution-Weathered Bedrock in Minnesota (MDH, 2005)

	$Q\left(\frac{1ft^3}{7.48gal}\right)\left(\frac{1440\min}{1day}\right)\left(\frac{0.0283m^3}{1ft^3}\right)$
$Q^{\gamma}Qs =$	$(H)\left(\frac{0.3048m}{1ft}\right)(K)(i)$

Calculation for Fixed Radius with No Upgradient Extension

See method 1 of Guidance for Delineating Wellhead Protection Area in Fractured and Solution-Weathered Bedrock in Minnesota (MDH, 2005)

Input Variables	
Well Pumping Rate m ³ /day	846
Pumping Period (years)	5
Effective porosity, n	0.233
Thickness of saturated portion of aquifer, L	
(m)	18.3

Where:

Q = Well Discharge (L^3/T) =(Well pumping rate)(pumping time period)

n = effective porosity

Well 5 (unique #749383)

Calculation for Ratio of Well Discharge to the Discharge Vector (Q/Qs)

See: Appendix 2 of Guidance for Delineating Wellhead Protection Area in Fractured and Solution-Weathered Bedrock in Minnesota (MDH, 2005)

If Q/Qs is less than 3000 m then delineation Technique 2 should be used: Calculated Fixed Radius with An Upgradient Extension

Input variables	
Well Discharge, Q (gpm)	25
Aquifer Thickness, H (ft)	138
Aquifer Hydraulic Conductivity K (m/day)	10.9
Hydraulic Gradient, i	0.0007754

Calculated	Q/Qs (m)
386	

Calculated Fixed Radius (m)

90

Volume (m³)

1,076,083

Equation listed in Appendix 2 of Guidance for Delineating Wellhead Protection Area in Fractured and Solution-Weathered Bedrock in Minnesota (MDH, 2005)

	$Q\left(\frac{1ft^3}{7.48gal}\right)\left(\frac{1440\min}{1day}\right)\left(\frac{0.0283m^3}{1ft^3}\right)$
$Q^{\gamma}Qs =$	$(H)\left(\frac{0.3048m}{1ft}\right)(K)(i)$

Calculation for Fixed Radius with No Upgradient Extension

See method 1 of Guidance for Delineating Wellhead Protection Area in Fractured and Solution-Weathered Bedrock in Minnesota (MDH, 2005)

Input Variables	
Well Pumping Rate m ³ /day	137
Pumping Period (years)	5
Effective porosity, n	0.233
Thickness of saturated portion of aquifer, L	
(m)	42.1

Where:

Q = Well Discharge (L^3/T) =(Well pumping rate)(pumping time period)

n = effective porosity

Well 6 (unique #593584)

Calculation for Ratio of Well Discharge to the Discharge Vector (Q/Qs)

See: Appendix 2 of Guidance for Delineating Wellhead Protection Area in Fractured and Solution-Weathered Bedrock in Minnesota (MDH, 2005)

If Q/Qs is less than 3000 m then delineation Technique 2 should be used: Calculated Fixed Radius with An Upgradient Extension

Input variables		
Well Discharge, Q (gpm)	40	
Aquifer Thickness, H (ft)	110	
Aquifer Hydraulic Conductivity K (m/day)	1.3	
Hydraulic Gradient, i	0.0034836	

Calculated	Q/Qs (m)
1433	

Calculated Fixed Radius (m)

194

Volume (m³)

3,972,162

Equation listed in Appendix 2 of Guidance for Delineating Wellhead Protection Area in Fractured and Solution-Weathered Bedrock in Minnesota (MDH, 2005)

0/05-	$Q\left(\frac{1ft^3}{7.48gal}\right)\left(\frac{1440\min}{1day}\right)\left(\frac{0.0283m^3}{1ft^3}\right)$
$Q^{\gamma}Qs =$	$(H)\left(\frac{0.3048m}{1ft}\right)(K)(i)$

Calculation for Fixed Radius with No Upgradient Extension

See method 1 of Guidance for Delineating Wellhead Protection Area in Fractured and Solution-Weathered Bedrock in Minnesota (MDH, 2005)

Input Variables	
Well Pumping Rate m ³ /day	218
Pumping Period (years)	5
Effective porosity, n	0.1
Thickness of saturated portion of aquifer, L	
(m)	33.5

Where:

Q = Well Discharge (L^3/T) =(Well pumping rate)(pumping time period)

n = effective porosity

Wells 1 and 2

Calculation of Revised Volume for Overlapping Capture Zones

See: Section 5, Scenario 1 of Guidance for Delineating Wellhead Protection Area in Fractured and Solution-Weathered Bedrock in Minnesota (MDH, 2005)

Well	Fixed Radius (m)	Open Hole (r	n) Top of open hole	(ft) Bottom of open hole (f	t) Overlap
	1	562	61	263	463 -
	2	447	30.2	261	360 0.979798
	Well 1 volu Contributing Well 2 volu Total Volu Revised Ra	ume 1858950 ume 7912272	8.06 m ³		

Wells 1,2 and 6

Calculation of Revised Volume for Overlapping Capture Zones

See: Section 5, Scenario 2 of Guidance for Delineating Wellhead Protection Area in Fractured and Solution-Weathered Bedrock in Minnesota (MDH, 2005)

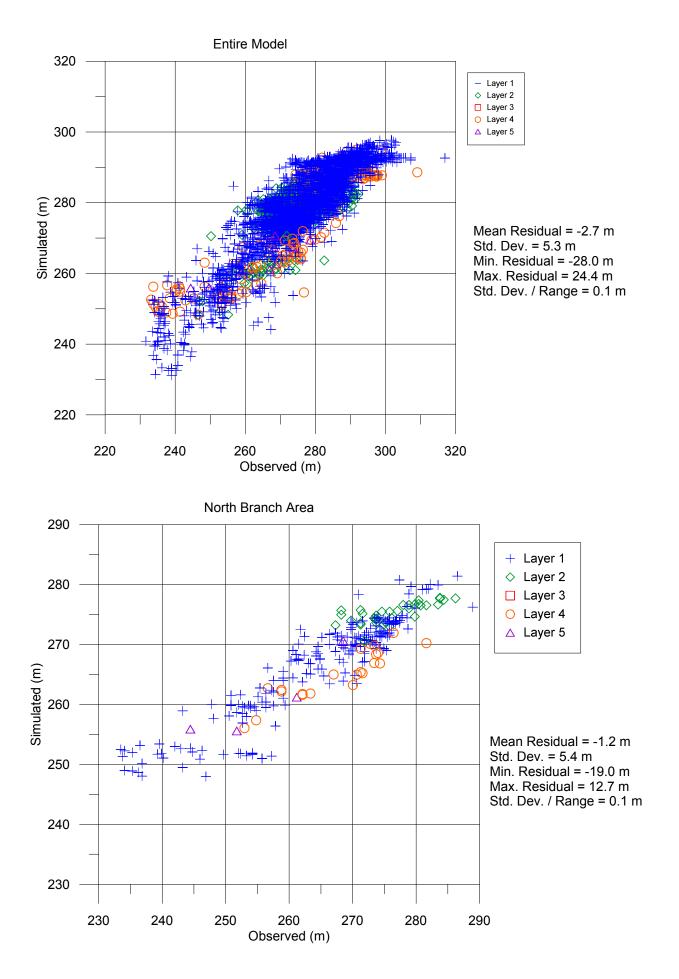
Well	Fixed Radius (m)	C)pen Hole (m)
1	1,2	643	61
	6	194	33.5
	Over	ap area	113041.88 m ²
	Common Open Hole	Interval	33.5 m
	Overlap	volume	3786903 m ³
	Well 1,2	volume	79122722.03 m ³
	Well 6	volume	3960938.867 m ³
	1,2	Overlap	3606365.784 m ³
	6	Overlap	180537 m ³
	Revised Well 1,2 Vol	ume	82729087.81 m ³
	Revised Well 6	Volume	4141476 m ³
	Revised Well 1,2	2 Radius	657 m
	Revised Well 6	6 Radius	198 m

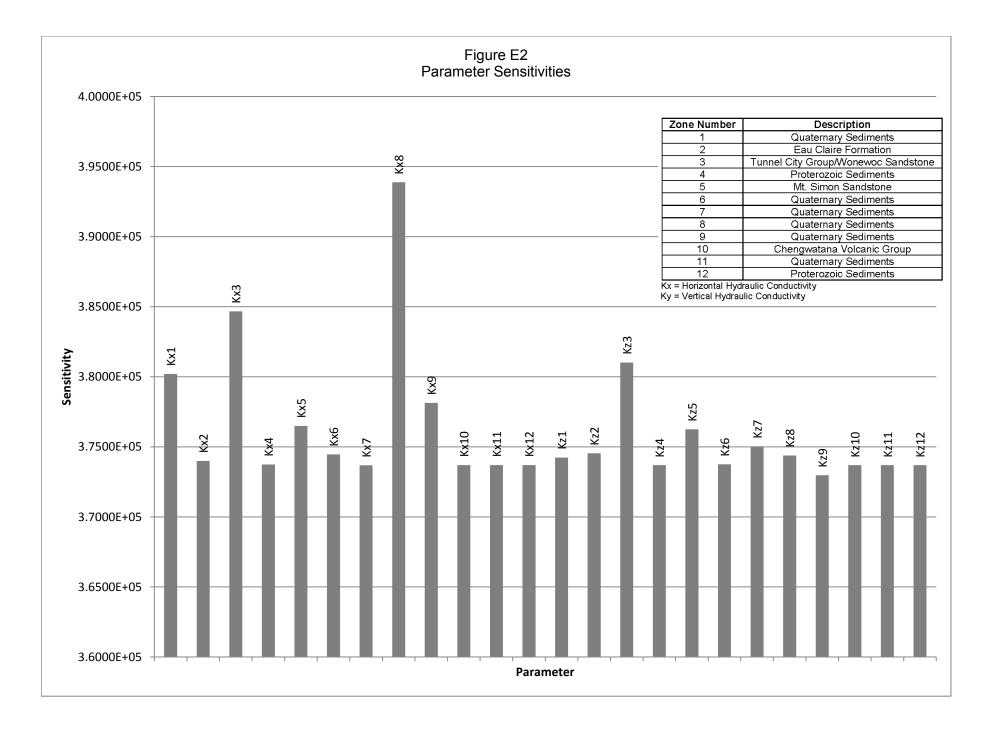
10 Year Fixed Radius Capture Zone Up Gradient Extensions

Well 3	522767		
Well Location		Center of extension	
Х	500198	X	499728.5
Y	5039362	Y	5039269
Length of extension (1.57 * radius of fixed radius capture zone)	478.5769999	Center of extension +10 degrees	
Flow Direction	-101.2	x	499719.5
Flow Direction + 10 degrees	-91.2	Y	5039352
Flow Direction - 10 degrees	-111.2	Center of extension - 10 degrees	
		X	499751.8
		Y	5039189

Well 4	706844		
Well Location		Center of extension	
Х	499154	Х	498631
Y	5038991	Y	5038887
Length of extension (1.57 * radius of fixed radius capture zone)	533.1467837	Center of extension +10 degrees	
Flow Direction	-101.2	X	
Flow Direction + 10 degrees	-91.2	Y 50	
Flow Direction - 10 degrees	-111.2	Center of extension - 10 degrees	
		Х	498656.9
		γ	5038798

10 Year Fixed Radius Capture Zone Up Gradient Extensions


Well 5	749383		
Well Location		Center of extension	
Х	498446	Х	498308.7
Y	5039147	Y	5039112
Length of extension (1.57 * radius of fixed radius capture zone)	141.6774185	Center of extension +1	0 degrees
Flow Direction	-104.2	x	498304.7
Flow Direction + 10 degrees	-94.2	Y	5039137
Flow Direction - 10 degrees	-114.2	Center of extension - 1	0 degrees
		X	498316.8
		Y	5039089


Well 6	593584		
Well Location		Center of extension	
Х	501930	X	501719.2
Y	5039325	Y	5039096
Length of extension (1.57 * radius of fixed radius capture zone)	311.4439439	Center of extension +10 degrees	
Flow Direction	-137.4	X	501682.6
Flow Direction + 10 degrees	-127.4	Y	5039136
Flow Direction - 10 degrees	-147.4	Center of extension - 10 degrees	
		х	501762.2
		Υ	5039063

Appendix E

Groundwater Model

Figure E1 Observed vs Computed Hydraulic Head

Groundwater Modeling Evaluation of Future Wells for the North Branch Water and Light Commission

Prepared for: WSB and Associates, Inc.

November 2005

Table of Contents

Introdu	ction		
1.1	l Purpos	e and Scope1	
1.2	2 Summ	ary of Findings	
2 Grour		ow Model Development	
2.1		s a Groundwater Flow Model?	
2.2	2 Overv	ew of Steps to Building and Using the Groundwater Flow Model	
2.3	3 Conce	ptual Hydrogeologic Model4	
	2.3.1	Statement of Problem Evaluated5	
	2.3.2	Geologic Conditions, Aquifers, and Aquitards5	
	2.3.3	Summary of Conceptual Hydrogeologic Model7	
2.4	4 Groun	dwater Flow Model Construction	
	2.4.1	Model Domain and Horizontal Discretization	
	2.4.2	Vertical Discretization	,
	2.4.3	Layer Geometry and Base Elevations	
	2.4.4	Hydraulic Conductivity Zonation	
	2.4.5	Faults	
	2.4.6	Lakes and Rivers	
	2.4.7	Recharge	
	2.4.8	Wells	
2.5	5 Model	Calibration	
	2.5.1	Overview of Calibration Process	
	2.5.2	Calibration Targets	ļ
	2.5.3	Calibration Results	
	2.5.4	Sensitivity and Uncertainty	
		lations of Future Well Locations	
3.1	0	Considerations	
3.2		ocation Alternative Evaluation	
	3.2.1	Well Alternative 1	
	3.2.2	Well Alternative 2	
	3.2.3	Well Alternative 3	
3.3	3 Discus	sion of Well Alternatives	
	3.3.1	Well Capacity and Drawdown at the Wells14	
	3.3.2	Regional Drawdown Effects	

Table of Contents (continued)

	3.2.3	Effect of Nearby Fault System	15
4 Conside	rations	for Future Well Siting	16
4.1	Test D	rilling and Test Wells	16
4.2	Appro	priations Permits	16
4.3	Wellhe	ead Protection Area Delineation	17
Reference	s		

List of Figures

- Figure 1 Uppermost Bedrock Interpreted from County Well Index Data
- Figure 2 Approximate Depth to Bedrock (feet)
- Figure 3 Conceptual Model of Groundwater Flow
- Figure 4 Model Domain and Horizontal Grid Discretization
- Figure 5 Cross Sections Through Model Depicting Vertical Discretization
- Figure 6 Example of Zonation for Hydraulic Conductivity
- Figure 7 Wall Feature, Representing Fault Boundary
- Figure 8 Recharge Zones in the Model
- Figure 9 Wells in Model
- Figure 10 Plot of Observed and Simulated Observations
- Figure 11 Contours of Simulated Potentiometric Head (feet, above mean sea level)for Layer 4 (Mt. Simon-Hinckley Aquifer)
- Figure 12 Relative Sensitivity of Model Calibration to Parameters
- Figure 13 Well Alternative 1: Predicted Drawdown (feet) in Mt. Simon-Hinckley Aquifer
- Figure 14 Well Alternative 1: Predicted Drawdown (feet) in Franconia-Ironton-Galesville Aquifer
- Figure 15 Well Alternative 1: Predicted Drawdown (feet) in Water-Table Aquifer
- Figure 16 Well Alternative 2: Predicted Drawdown (feet) in Mt. Simon-Hinckley Aquifer
- Figure 17 Well Alternative 2: Predicted Drawdown (feet) in Franconia-Ironton-Galesville Aquifer
- Figure 18 Well Alternative 2: Predicted Drawdown (feet) in Water-Table Aquifer
- Figure 19 Well Alternative 3: Predicted Drawdown (feet) in Mt. Simon-Hinckley Aquifer

Table of Contents (continued)

Figure 20 Well Alternative 3: Predicted Drawdown (feet) in Franconia-Ironton-Galesville Aquifer

Figure 21 Well Alternative 3: Predicted Drawdown (feet) in Water-Table Aquifer

1.1 Purpose and Scope

This report summarizes the results of a study to identify and predict the location of future water supply wells for the North Branch Water and Light Commission. Recent attempts within the City limits to install wells have been met with limited success, due mainly to the caving in of the openhole section of the well. Previous evaluation of the geologic setting (Letter to Nancy Zeigler from Brian LeMon and John Greer, September 15, 2005) suggests that there is a Precambrian fault system underneath North Branch that uplifted the bedrock, causing significant thinning of the Mt. Simon-Hinckley aquifer and fracturing of the bedrock. That study, and supplemental work performed as part of this study, indicates that the fault system is likely underneath and parallel to Interstate 35.

This study suggests that just to the west of the City limit, the full section of the Mt. Simon-Hinckley aquifer, as well as the overlying Eau Claire Formation and the Franconia-Ironton-Galesville aquifer, should be present. The uplifted fault block (horst) is primarily east of the City's western limit. Therefore, new wells should be installed west of the City in the Mt. Simon-Hinckley aquifer and also possibly in the Franconia-Ironton-Galesville aquifer.

A regional three-dimensional groundwater flow model was developed to evaluate locations for five future wells, each pumping at 900 gallons per minute (gpm). Four to five additional wells should be able to supply future water demand. The groundwater flow model was calibrated and used to estimate the drawdown that would be caused by pumping of these wells.\

1.2 Summary of Findings

This study finds the following:

- 1. A new well field could be developed approximately two miles west of the City. Wells installed in the Mt. Simon-Hinckley aquifer and in the Franconia-Ironton-Galesville aquifer should be able to yield sufficient quantities of groundwater.
- These new wells will cause regional drawdown, as expected. Some existing wells in the area might experience some drops in yield but it is likely that there would be no noticeable adverse impacts from pumping.

1

3. The fault system does not appear to adversely affect well yields, provided that the wells are installed sufficiently west of the City to encounter the Franconia-Ironton-Galesville aquifer and the full section of the Mt. Simon-Hinckley aquifer. While two miles west of the City limits should be sufficient, test drilling and pumping tests should be performed to verify this conclusion.

2.1 What is a Groundwater Flow Model?

A groundwater flow model is a computer program that simulates the important conditions that control groundwater levels, flow to wells, and the interactions between geology and surface-water features. The computer program uses well-established mathematical equations that describe how water flows in aquifers and aquitards. The program is tailored to a particular area's geology and hydrology and is, most importantly, formulated to answer very specific problems.

For this study, the groundwater flow code MODFLOW was used (McDonald and Harbaugh, 1988). MODFLOW was developed by the U.S. Geological Survey and is the most widely used groundwater modeling code in the world. MODFLOW employs a finite-difference method of solving the differential equations that describe groundwater flow. It is capable of simulating three-dimensional flow in aquifers and aquitard, both in steady-state and transient modes.

Graphical user interfaces (GUIs) are almost always used with groundwater flow models. GUIs greatly assist in designing the model, entering the data, and post-processing the results. For this study, the GUI Groundwater Vistas, version 4 (ESI, 2004) was used.

2.2 Overview of Steps to Building and Using the Groundwater Flow Model

The groundwater flow model for this study was developed in the following steps:

- 1. The hydrogeology and data availability of the area was evaluated and summarized (Letter to Nancy Zeigler from Brian LeMon and John Greer, September 15, 2005). The most salient feature in the study area is fault block (horst) underneath the City of North Branch that has lifted up the Franconia-Ironton-Galesville aquifer and the Mt. Simon-Hinckley aquifer and subsequently eroded these units away (or thinned them considerably).
- 2. The problems that require a groundwater flow model were determined. In this case, the problem at hand is to determine where wells can be installed to the west of the City of North Branch in order to maximize well yields and meet future water demands.

- 3. A conceptual model of groundwater flow was developed. The conceptual model is a schematic representation of the major aquifers, aquitards, water sources, and water sinks in the area. The conceptual model is the basis for the computer model of groundwater flow.
- 4. The computer model was built using the following information:
 - a. Elevations of the base of key hydrostratigraphic units from the Minnesota Geological Survey's County Well Index (CWI);
 - b. Surface-water features, including lake stage elevation;
 - c. Higher capacity wells (i.e. wells with groundwater appropriations permits), with pumping rates assigned on the basis of 2004 annual averages; and
 - d. Geophysical data on the locations of fault zones.
- 5. The computer model is put through an exhaustive calibration procedure to "ground truth" the model and prepare it for predictive simulations. The calibration process involves automatically adjusting model parameters (e.g., aquifer and aquitard hydraulic conductivity and recharge from infiltrating precipitation) with expected ranges until the difference between groundwater levels measured in wells (from CWI) and the computer's simulation of groundwater levels is minimized in a least-squares sense. In other words, the calibration process ensures that the model is capable of reasonably reproducing current groundwater flow conditions.

The calibrated groundwater flow model becomes a tool for predicting the effects of future wells. The model can be used to predict the amount of drawdown induced by a given pumping rate for future well locations and thereby make some conclusions about well interference effects, potential yields, and optimal spacing between future wells. Thus, the groundwater flow model becomes the design tool for a new well field.

2.3 Conceptual Hydrogeologic Model

The conceptual hydrogeologic model defines the major aquifers, aquitards, geologic structures, and water sources/sinks that are important to the location *and* the problem for which the model is being developed. The conceptual model establishes how geologic units interact with hydrologic features to control the direction and rate of groundwater flow. The conceptual model also forms the basis for

how aquifers and aquitards are represented in the computer model (i.e. how geologic units are lumped together or split apart for the purposes of the computer simulation.

2.3.1 Statement of Problem Evaluated

Different conceptual models may be necessary for a particular location, depending upon the nature of the problem(s) that the computer model is intended to evaluate. Once built, a compute model may be able to solve other problems for which it was not originally designed but often a new model with a different conceptual model may be necessary.

The problem for which this model was developed is stated as follows:

Locations for new public water supply wells for the North Branch Water and Light Commission will be evaluated with the model. The area of focus is immediately west of the City and west of a known fault zone. The primary aquifer of interest is the Mt. Simon-Hinckley aquifer. An aquifer of secondary interest is the Franconia-Ironton-Galesville (FIG) aquifer. The following questions may need addressing:

- 1. How close to the fault zone can a well be located before boundary effects impinge upon the well's yield?
- 2. What are reasonable expectations for well yield?
- 3. If wells are located to meet expected future demands, where should those wells be located (in particular, how far apart should these wells be located to minimize well interference effects)?
- 4. How much will groundwater levels be lowered in the area and what existing wells in the area might be affected by pumping of new municipal water supply wells?

2.3.2 Geologic Conditions, Aquifers, and Aquitards

2.3.2.1 Geologic History

North Branch is located in the northern part of a geologic feature called the *Hollandale Embayment* – a large bay in an ancient shallow sea were sediment was deposited as the seas waxed and waned to form what is now most of the major bedrock geologic units in eastern Minnesota. Before the deposition of what is now the Mt. Simon Sandstone, there was structural uplifting of Precambrian rocks that formed an uplifted block (called a "horst") that trends north-south. The western edge of

this horst corresponds approximately with Interstate 35. Subsequent tectonic activities formed a structural basin (the Twin Cities basin), centered under what is now Minneapolis and St. Paul. Bedrock units generally dip southward toward the center of the Twin Cities basin. There may have been some reactivation of the Precambrian faults after deposition of younger rocks (Morey, 1972).

During the Quaternary (about the last two-million years), glacial advances eroded away higher relief bedrock units and deposited a mixture of glacially derived tills and outwash over the landscape. The combination of depositional history, structural faulting, and glaciation has resulted in the current geologic setting. Major bedrock aquifer units, such as the Prairie du Chien-Jordan aquifer, are not present in the North Branch area, due to these processes. The Franconia-Ironton-Galesville aquifer is present to west of North Branch but underneath North Branch (where the underlying horst feature is present), the uppermost bedrock unit is the Mt. Simon Sandstone (and the upper portion of this unit has also been eroded).

2.3.2.2 Regional Bedrock Geology

A definitive published map of the uppermost bedrock in the North Branch area and surrounding region is not available. County Well Index data were evaluated to identify the uppermost bedrock unit in wells in the region. Differentiation between units, especially with respect to Mt. Simon Sandstone, Hinckley Formation, and Fond du Lac Formation is difficult in some locations, based on the drilling logs. An interpretation of the approximate extent of uppermost bedrock units is shown on Figure 1. Also shown on this figure is the approximate location of the horst, as interpreted from the Minnesota Geological Survey's aeromagnetic survey results (included as part of Letter to Nancy Zeigler from Brian LeMon and John Greer, September 15, 2005). The depth to bedrock is greatest in the vicinity of the horst feature underneath North Branch. The interpreted depth to bedrock, based on CWI data, is shown on Figure 2.

2.3.2.3 Hydrostratigraphy

Hydrostratigraphy refers to the geologic units that make up aquifers and aquitards. Aquifers transmit usable quantities of water, whereas aquitards do not. Aquitards typically separate one aquifer from another and are sometimes referred to as "confining beds".

Hydrostratigraphic units that are considered as part of the groundwater model in the evaluation of water supplies for North Branch include:

6

Geologic Unit	Hydrostratigraphic Unit	Comments
Quaternary glacial sediments	Surficial Aquifer	Locally variable; susceptible to contamination
Franconia Formation Ironton & Galesville	Franconia-Ironton-Galesville (FIG) Aquifer	May have yields high enough for public water supplies
Sandstones		
Eau Claire Formation	Eau Claire Aquitard	Significant regional aquitard
Mt. Simon and Hinckley Sandstones	Mt. Simon-Hinckley Aquifer	Moderately high yields where full section is present; may have high total dissolved solids
Fond du Lac Formation	Fond du Lac Aquifer	Moderate to poor yield; high total dissolved solids

2.3.2.4 Recharge and Discharge of Groundwater

The primary mechanisms of recharge to the aquifer system in the region is infiltrating precipitation that moves below the root zone of plants and migrates downward by gravity to the water table. Recharge rates in east-central Minnesota are typically in the range of less than 1 inch per year to over 12 inches per year. A secondary source of recharge is seepage through the bottoms of lakes, wetlands, and some streams.

Most groundwater flows southeast and east toward the St. Croix River, which is a regional discharge zone. Secondary discharge zones includes smaller streams, some lakes and wetlands, evapotranspiration from plants, and wells.

2.3.2.5 Direction of Groundwater Flow

Regional groundwater flow is to the east and south, toward the St. Croix River. Differing directions of flow can be expected for the shallow aquifer (surficial deposits) near lakes and streams. Near high capacity wells, groundwater flow is typically toward the wells.

2.3.3 Summary of Conceptual Hydrogeologic Model

The conceptual hydrogeologic model of groundwater flow in the region is depicted schematically in the cross section on Figure 2. The conceptual model consists of five hydrostratigraphic units

(surficial aquifer; Franconia-Ironton-Galesville aquifer; Eau Claire aquitard; Mt. Simon-Hinckley aquifer; and Fond du Lac aquifer).

2.4 Groundwater Flow Model Construction

2.4.1 Model Domain and Horizontal Discretization

The domain (extent) of the groundwater flow model is shown on Figure 4. Also shown on Figure 4 is the finite-difference grid. The domain was selected to encompass an area sufficiently large enough to include the major hydraulic sources and sinks. The western boundary of the model represents the approximate western extent of the Mt. Simon-Hinckley aquifer. The eastern edge extends to the St. Croix River.

The model is approximately 94 km x 67 km. There are 103 rows and 148 columns, with 60,800 active grid cells. The maximum grid cell size is 1 km x 1 km (for far-field areas where model accuracy is not as important). The grid is refined in areas west of North Branch, were predictive simulations of future wells are performed. Grid cells in this area are a maximum of 250 m x 250 m, and are refined much smaller around hypothetical wells for predictive simulations.

2.4.2 Vertical Discretization

The model is divided into five computation layers. Layer 1 represents the glacial drift aquifer. Layer 2 is generally the Franconia-Ironton-Galesville aquifer. Layer 3 is generally the Eau Claire aquitard. Layer 4 is the Mt. Simon-Hinckley aquifer and Layer 5 is the Fond du Lac aquifer. Along the periphery of the model domain and where the Franconia-Ironton-Galesville aquifer and/or the Eau Claire aquitard are not present, Layers 2 and 3 also can represent portions of the Mt. Simon-Hinckley aquifer.

2.4.3 Layer Geometry and Base Elevations

Base elevations for the various layers were assigned using well log information in the County Well Index. These data were geostatistically assigned to grid cells in the model domain for the various layers. Cross sections through the model are shown on Figure 5, depicting the vertical discetization and the variation in model layers across the model domain. In the vicinity of North Branch, where faulting of the horst has increased the relative elevation of bedrock units, the model's base is substantially higher and layers are thinner.

2.4.4 Hydraulic Conductivity Zonation

There is almost no regional data on hydraulic conductivity (permeability) values for the bedrock units in the model domain. Information from the Twin Cities area provides some guidance. The approach used in this study was to determine the aquifer parameter values through an *inverse optimization method* in the calibration process. This process lends itself to dividing up the model layers into zones where hydraulic conductivity values are likely to be similar. For example, in Layer 2, there are zones to delineate where the Franconia Ironton-Galesville is present, zones for where the Eau Claire Formation is present, and zones for glacial drift. Examples of zonation are shown on Figure 6. Each zone has both a horizontal and a vertical hydraulic conductivity value.

2.4.5 Faults

The fault system that is associated with the horst feature is represent in two ways: by varying the base elevation of the bottom of the Fond du Lac Formation and by including *horizontal wall* features that have lower values of hydraulic conductivity. The horizontal wall features hinder groundwater flow across the fault zone. They are included in all five layers of the model, at the location shown on Figure 7.

2.4.6 Lakes and Rivers

Major lakes and rivers are represented in the model using constant head cells, for which the average lake stage is assigned (in meters above mean sea level). Average lake stages were obtained from the Minnesota Department of Natural Resources Lakefinder web site. All lakes are in Layer 1, except portions of the St. Croix River, which are in both Layers 1 and 2.

2.4.7 Recharge

Recharge is applied to Layer 1. Recharge represents the average annual rate of water that infiltrates through the ground and reaches the water table. Recharge is divided into zones in the model for calibration. Recharge zones are shown on Figure 8. Recharge zones correspond approximately to hydraulic conductivity zones in Layer 1.

2.4.8 Wells

High capacity pumping wells are included in the model if they are listed in the Minnesota Department of Natural Resources SWUDS data base for 2004. These are wells that have groundwater appropriations permits. There are 84 pumping wells in the model. Pumping rates assigned to the

9

wells are the average annual rates for 2004, converted to cubic meters per day. Depending on the length of the well screen or open-hole interval, wells may penetrate multiple layers. Wells in the model are shown on Figure 9.

2.5 Model Calibration

2.5.1 Overview of Calibration Process

Model calibration is the process of varying aquifer parameters (e.g., hydraulic conductivity, recharge) within expected ranges of values until an acceptable match is obtained between observed groundwater levels in wells and simulated groundwater levels. The observed water levels are called calibration "targets". The difference between the observed data and the simulated data is called a "residual". The objective of calibration is to minimize the residual.

It is impossible to perfectly match every observation. The objective of calibration is to obtain a minimum residual for all of the calibration targets. The "objective function", as it is called, is to minimize the sum of the squares of all residuals. Residuals are squared to normalize values that would otherwise be either negative residuals or positive residuals.

An automated calibration method was used in this study. This process is called "automated inverse optimization" and involves the use of another program, called PEST (Watermark Computing, 1994). PEST numerically solves for the derivative of the objective function, thereby obtaining the minimum. The types of parameters, the parameter zones, and the permissible upper and lower limits of the parameter values are set prior to the optimization process. PEST then runs the groundwater model several hundred times until the objective function is minimized.

2.5.2 Calibration Targets

In this study, 5,258 calibration targets, representing groundwater elevation data from wells in all layers were used, with the exception of Layer 3 (Eau Claire aquitard), which does not have wells completed in it. The calibration targets themselves have associated measurement errors. The calibration targets used in this study were obtained from the static water elevations listed in the County Well Index. The sources of error in these data include the following:

- Error in measurement by the driller at time that the well was drilled;
- Seasonal variations, depending on when the well was drilled;

- Year-to-year variations, depending on when the well was drilled;
- Error in estimating the ground surface elevation of the well;
- Error in assigning the well to the correct hydrostratigraphic unit;
- Errors caused by local pumping conditions not included in the model.

Despite these errors, CWI calibration data has proven to be very useful. The shear size of the data set (over 5,000 targets) negates many of the errors.

A weighting process was used to assign more emphasis on certain target values than others. Most of the targets in the model domain are shallow wells in the glacial drift aquifer. This aquifer is of less importance to the objectives of this study than bedrock aquifers. Therefore, during the calibration/optimization process, twice the weight was assigned to bedrock targets than glacial dirft aquifer targets.

2.5.3 Calibration Results

A plot of the observed and simulated observations is shown on Figure 10. The residual mean is -3.22 meters. The residual standard deviation divided by the range in head over the model domain is 0.063. Values less than 0.1 are indicative of a good calibration. An example of the calibrated model's simulated potentiometric head is shown on Figure 11 for Layer 4 (Mt. Simon-Hinckley aquifer). As seen in Figure 11, the area of the horst is a location where aquifer transmissivities decrease and hydraulic head gradient increases. This trend in groundwater levels is similar in all five layers.

2.5.4 Sensitivity and Uncertainty

The model's results are most sensitive to values of recharge, as shown on Figure 12. This is typical, because recharge is the primary source of water to the groundwater flow system. Recharge Zone 1, which is recharge to areas where the Mt. Simon-Hinckley aquifer subcrops beneath glacial drift, is the most sensitive parameter.

It is important to recognize that the calibrated model represents one possible representation of the conceptual flow system – there may be others that are equally plausible. As such, there is inherent uncertainty in the model's conceptualization, parameter values, and predictive results.

3.1 Design Considerations

For the purpose of evaluating future well locations with the groundwater flow model, it was assumed that the City of North Branch will need a total of approximately 4,500 gallons per minute (gpm) firm capacity 18 years from present (2024). This 900 gpm higher than the estimated 3,600 gpm needed but provides for some additional capacity, beyond the estimated future needs. The predictive simulations assume that this demand will be met by 5 wells, each pumping at 900 gpm. These five wells would be located in an area west of the City limits and west of the area where faulting is believed to be prevalent. It was also assumed that the five wells would be serviced by a single raw water main connecting the wells to treatment within the City limits.

The length of raw water main could be a limiting factor (e.g., cost, accessibility, etc.). The alternative well locations that are evaluated in this section attempt to balance the length of raw water main with the need to keep separation of wells in order to minimize well interference effects.

Alternative results are presented in the form of maps of drawdown (lowering of pressure head in the aquifer) within the Mt. Simon-Hinckley aquifer, the Franconia-Ironton-Galesville aquifer, and the water table (glacial drift or surficial aquifer). It is important to recognize that some drawdown does take place in adjoining aquifers that are not being directly pumped, due to induced leakage through separating aquitards. The drawdown maps provide a relative comparison between alternatives, based on how much drawdown is induced – particularly near the wells. Greater amounts of drawdown increase the likelihood of greater well interference effects and less individual well capacity.

It is also important to recognize that well efficiency is not considered in the modeling results – wells are assumed to be 100% efficient. Wells that are not 100% efficient will have addition drawdowns within the well (but not within the aquifer adjacent to the well) that can further reduce the total available well yield. In general, a well is at least 90% efficient if the drawdown in the well is no greater than 1/3 of the total available drawdown in a well (provided the well is properly designed, constructed, developed, and maintained).

3.2 Well Location Alternative Evaluation

3.2.1 Well Alternative 1

Well Alternative 1 includes five wells completed in the Mt. Simon-Hinckley aquifer, each pumping at an average rate of 900 gpm. Spacing between wells is approximately 2,300 to 2,800 feet. The wells are located along existing roads and the spacing of the wells is staggered. The distance from the City limits to the farthest well (via roads) is about 2 miles.

Well locations and the predicted drawdown (feet) in the Mt. Simon-Hinckley aquifer, the Franconia-Ironton-Galesville aquifer, and the water-table (surficial) aquifer caused by continuous, steady-state pumping of the wells are shown on Figures 13, 14, and 15.

Drawdown in the wells (assuming 100% efficiency) is about 70 feet. The resulting cone of depression in the Mt. Simon-Hinckley aquifer extends radially for about 10 miles. The cones of depression in the overlying Franconia-Ironton-Galesville and water-table aquifers are much less extensive, with maximum drawdown near the wells of about 10 feet.

3.2.2 Well Alternative 2

Well Alternative 2 includes five wells completed in the Mt. Simon-Hinckley aquifer, each pumping at an average rate of 900 gpm. Spacing between wells is approximately 1,200 feet. The wells are located along an existing north-south township road. The distance from the City limits to the line of wells is slightly farther than 1 mile.

Well locations and the predicted drawdown (feet) in the Mt. Simon-Hinckley aquifer, the Franconia-Ironton-Galesville aquifer, and the water-table (surficial) aquifer caused by continuous, steady-state pumping of the wells are shown on Figures 16, 17, and 18.

Drawdown in the wells (assuming 100% efficiency) is about 80 to 90 feet. The resulting cone of depression in the Mt. Simon-Hinckley aquifer extends radially for about 10 miles. The cones of depression in the overlying Franconia-Ironton-Galesville and water-table aquifers are much less extensive, with maximum drawdown near the wells of about 10 feet.

3.2.3 Well Alternative 3

Well Alternative 3 includes three wells completed in the Mt. Simon-Hinckley aquifer and two wells completed in the Franconia-Ironton-Galesville aquifer, each pumping at an average rate of 900 gpm.

Spacing between wells is approximately 1,200 feet and the locations are identical to Well Alternative 2.. The wells are located along an existing north-south township road. The distance from the City limits to the line of wells is slightly farther than 1 mile.

Well locations and the predicted drawdown (feet) in the Mt. Simon-Hinckley aquifer, the Franconia-Ironton-Galesville aquifer, and the water-table (surficial) aquifer caused by continuous, steady-state pumping of the wells are shown on Figures 19, 20, and 21.

Drawdown in the three Mt. Simon-Hinckley wells (assuming 100% efficiency) is about 45 to 50 feet. Drawdown in the two Franconia-Ironton-Galesville wells (assuming 100% efficiency) is about 20 feet. The resulting cone of depression in the Mt. Simon-Hinckley aquifer extends radially for about 10 miles. The cone of depression in the overlying Franconia-Ironton-Galesville aquifer extends about 6 miles and the cone of depression in water-table aquifer extends about 2 to 3 miles from the wells.

3.3 Discussion of Well Alternatives

3.3.1 Well Capacity and Drawdown at the Wells

All three well alternatives appear to be viable - i.e., all three alternatives can supply 4,500 gpm without excessive drawdown at the wells that would substantially affect well capacity. The predicted drawdowns at the wells are not below the top of the pumped aquifer(s). From a well capacity point of view, any of the three alternatives appear to be viable.

Other configurations of wells would likely work equally well. However, an important consideration must always be well spacing. <u>Wells should be spaced at least 1,200 feet apart to prevent excessive</u> <u>drawdown at the wells.</u>

3.3.2 Regional Drawdown Effects

The model predicts that there will be widespread drawdown in the Mt. Simon-Hinckley aquifer. However, the pre-pumping potentiometric head in the Mt. Simon-Hinckley aquifer is about 300 feet above the top of the aquifer. Thus, there should not be any issues of interference with other wells in the area that are completed in the Mt. Simon-Hinckley aquifer, unless the pump setting of a particular well is too high (in which case, the pump can be lowered by adding more drop pipe).

For Alternatives 1 and 2, the model predicts that drawdowns in the Franconia-Ironton-Galesville aquifer and the surficial aquifer will be no more than 5 to 10 feet. Again, unless a pump is set in an

existing well at a very shallow depth, this drawdown should not result in any noticeable loss in a well's capacity. It may be necessary, as part of the Appropriations Permit approval process, to tabulate wells in the area and identify any wells that might be susceptible to drawdown effects.

For Alternative 3, drawdown in the Franconia-Ironton-Galesville aquifer is predicted to be about 10 to 20 feet. Again, this will likely not cause capacity issues unless a well's pump is set very shallow in an existing well.

3.2.3 Effect of Nearby Fault System

The fault system, which is located approximately parallel to Interstate 35, was modeled in such a manner that its effects would be conservative -i.e., it would error on the side of causing more drawdown, rather than less. The modeling indicated that for the three alternatives, the fault has little impact on drawdown and capacity.

As new wells are located, it will be important to identify locations that are a distance sufficiently west of the fault system that wells are not installed in the fault (which can cause failing of open holes and reduced yields). The three alternatives likely are located in an area where the Franconia-Ironton-Galesville aquifer and the Eau Claire Formation are present above the full thickness of Mt. Simon-Hinckley aquifer. Caving or other hole failures should not be a problem at these locations, but test drilling will be required to verify that the Franconia-Ironton-Galesville aquifer is present. If, during drilling of a well, the Franconia-Ironton-Galesville units are not encountered, that location should be abandoned and another location (likely farther to the west) should be selected.

4 Considerations for Future Well Siting

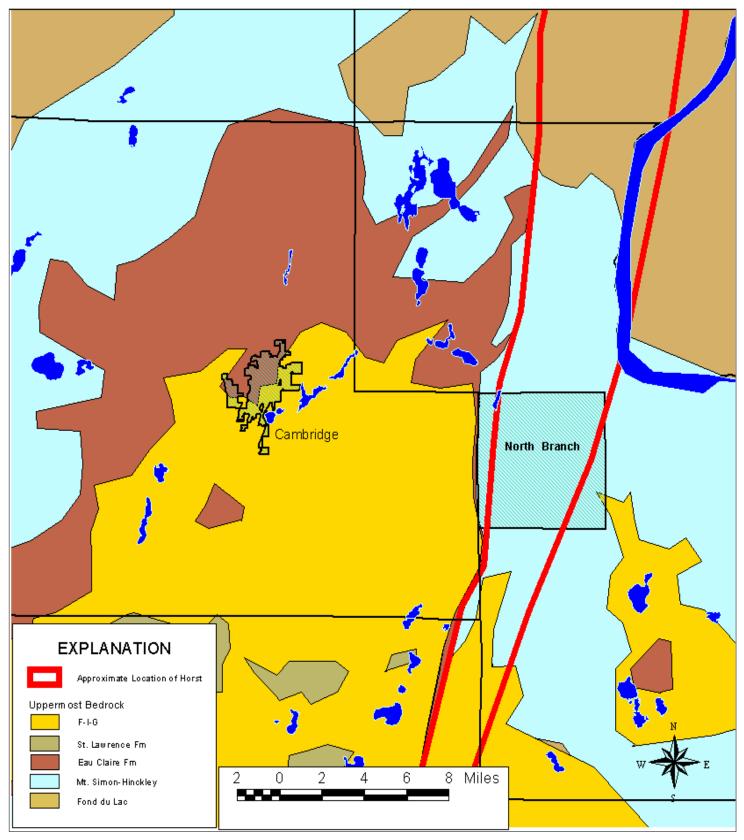
4.1 Test Drilling and Test Wells

The groundwater modeling presented in this report suggests that groundwater supplies are plentiful in areas to the west of North Branch but the model relies on imperfect information in that area. As new wells are contemplated, test drilling and test wells should be installed. The test well should verify:

- 1. The presence (and thickness) of the Franconia-Ironton-Galesville aquifer. If this unit is thin (or absent) in a test hole, there is a high likelihood that the location is not west of the fracture zone.
- 2. Aquifer parameters and predictions of drawdown. The groundwater model relies on information from regional information and the calibration process and as such, has uncertainty associated with predictions of yield and drawdown. A pumping test should be performed on a new test well and drawdowns should be monitored in piezometers (monitoring wells) installed in both the Mt. Simon-Hinckley aquifer and the Franconia-Ironton-Galesville aquifer. A pumping test would likely involve continuous pumping of a test well for 96 hours and monitoring of changes in water levels in the piezometers. Transmissivity values can be calculated from the pumping test results and if necessary, the model can be updated to evaluate the well yields.

Test wells can be installed in a such a manner that they can be converted to production wells at a later date. It is likely that the information from one test well can be applicable to the entire well field.

4.2 Appropriations Permits


An application for an appropriations permit from the Department of Natural Resources will likely require some provision for aquifer testing. The DNR will also be interested in the effects of drawdown on nearby wells. This model (perhaps with adjustments after a pumping test) would be a good tool for addressing those types of issues. DNR staff have looked for and accepted this type of modeling result in other permit applications.

4.3 Wellhead Protection Area Delineation

Preliminary wellhead protection areas (WHPAs) will need to be delineated well when a new well is installed. Final WHPAs will need to be delineated using time-of-travel criteria. Typically, a groundwater flow model is used. The model constructed for this study could be used for delineating WHPAs for future wells and for the City's existing wells.

ESI Inc., 2004, Groundwater Vistas, Version 4. Herndon, VA.

- McDonald, M.G. and A.W. Harbaugh, 1988. A modular three-dimensional finite-difference groundwater flow model, USGS TWRI Chapter 6-A1, 586 p.
- Morey, G.B., 1972. Petrology of Keweenawan sandstones in the subsurface of southeastern Minnesota in Geology of Minnesota: A Centennial Volume, Sims and Morey, eds., p. 436-449.

Uppermost Bedrock Interpreted from County Well Index Data

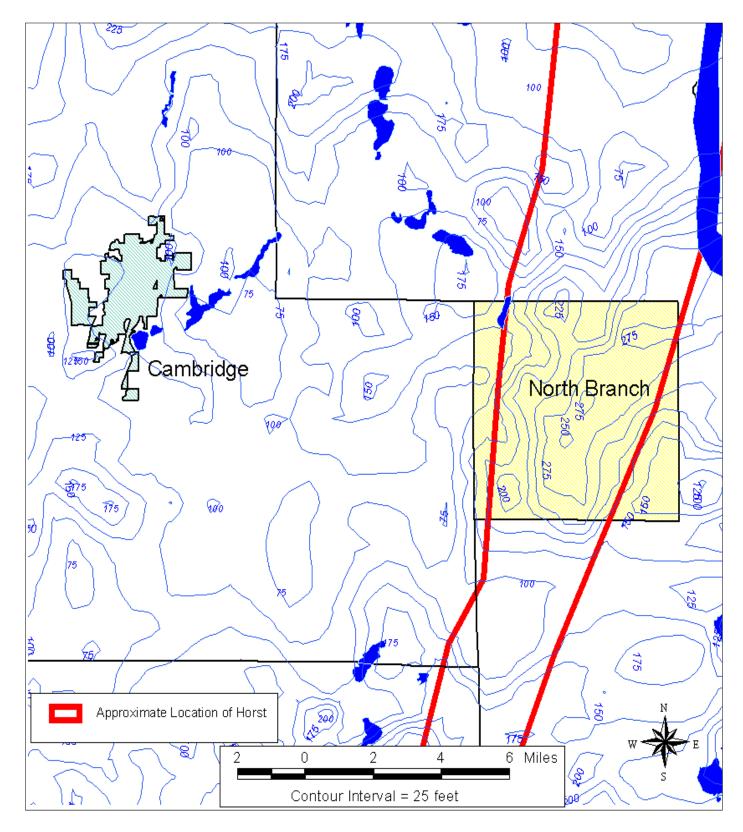
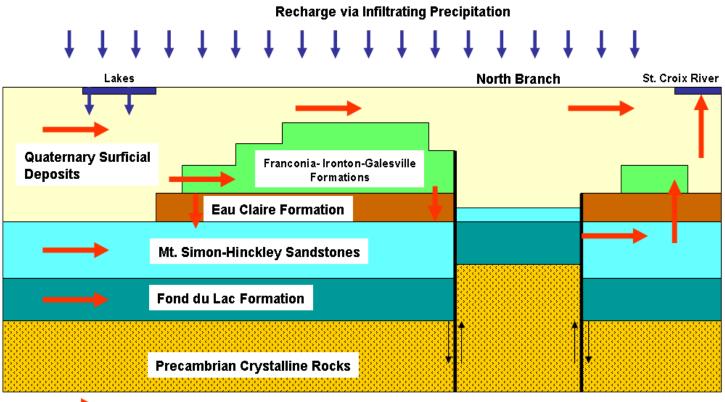
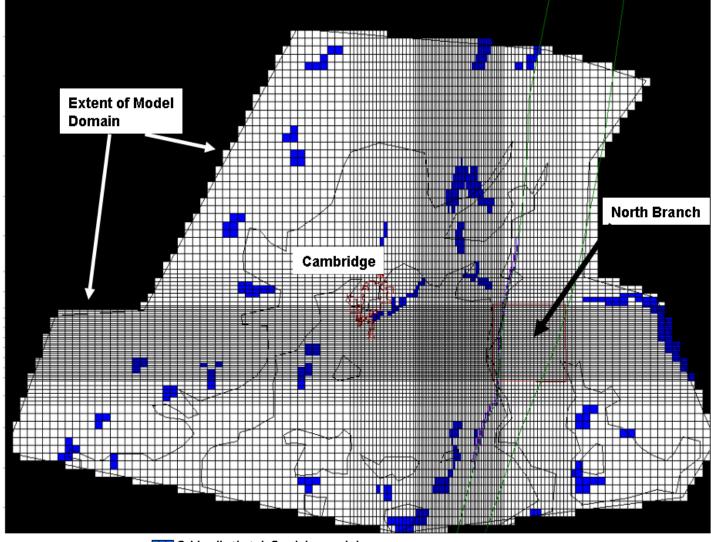



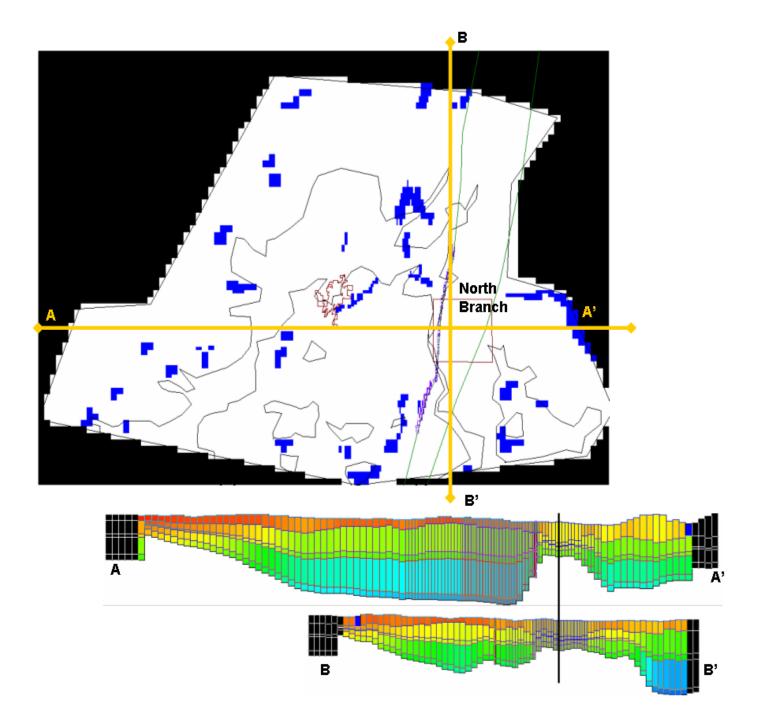
Figure 2

Approximate Depth to Bedrock (feet)

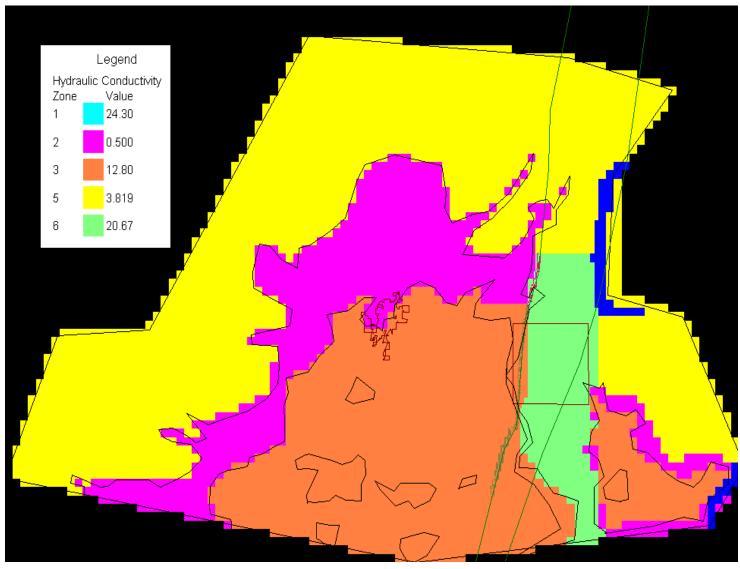

East

Direction of Groundwater Flow

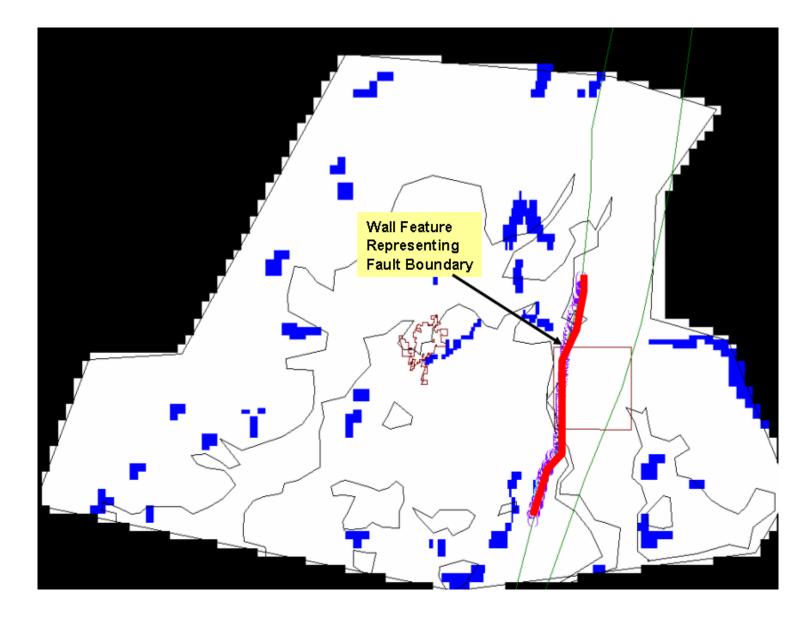
Figure 3


Conceptual Model of Groundwater Flow

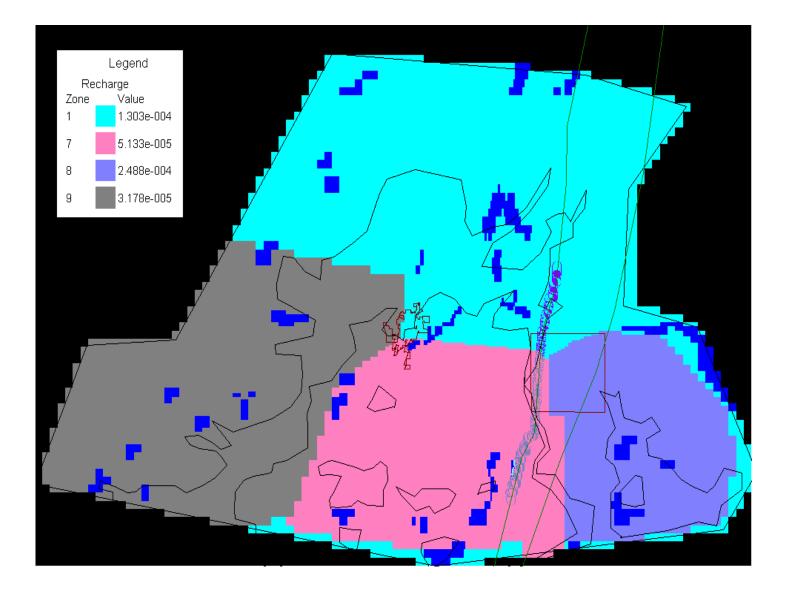
Grid cells that define lakes and rivers



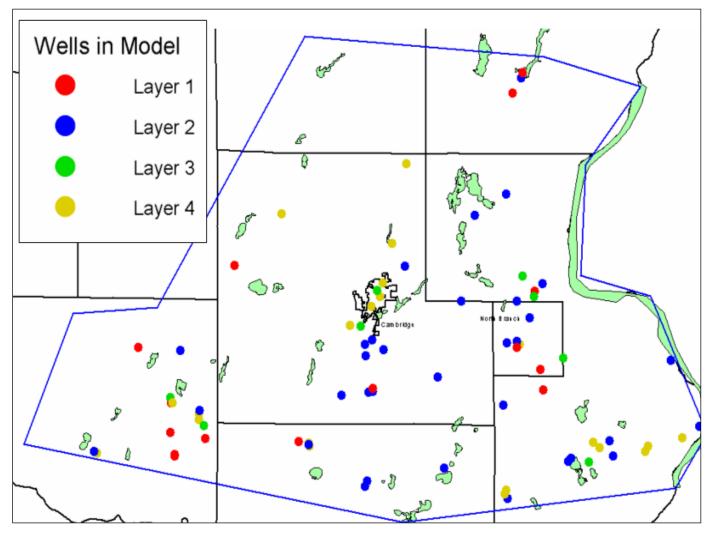
Model Domain and Horizontal Grid Discretization


Cross Sections Through Model Depicting Vertical Discretization

Layer 2

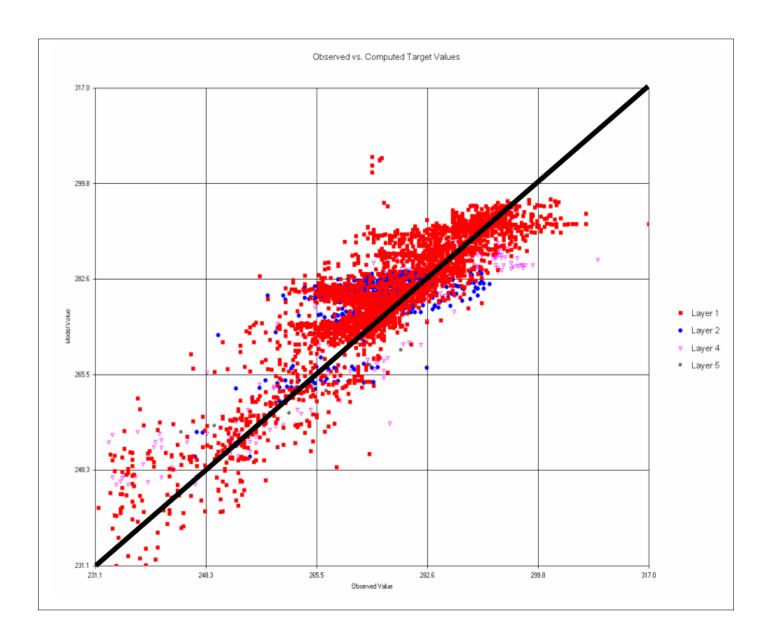

Figure 6

Example of Zonation for Hydraulic Conductivity

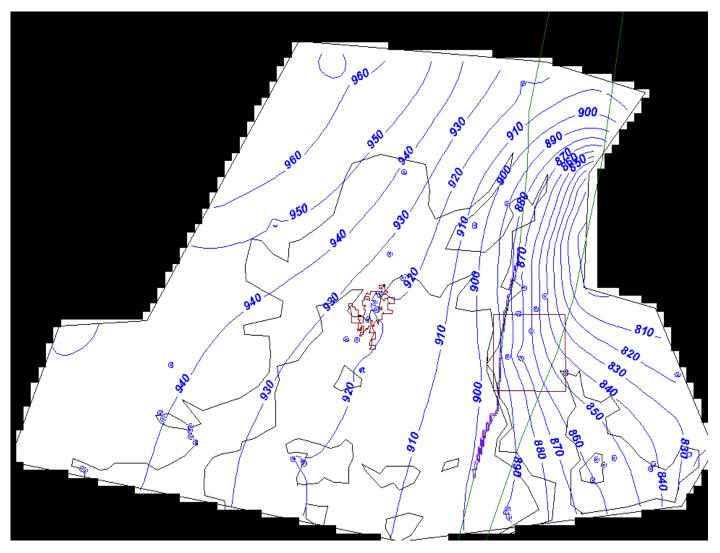


Wall Feature, Representing Fault Boundary

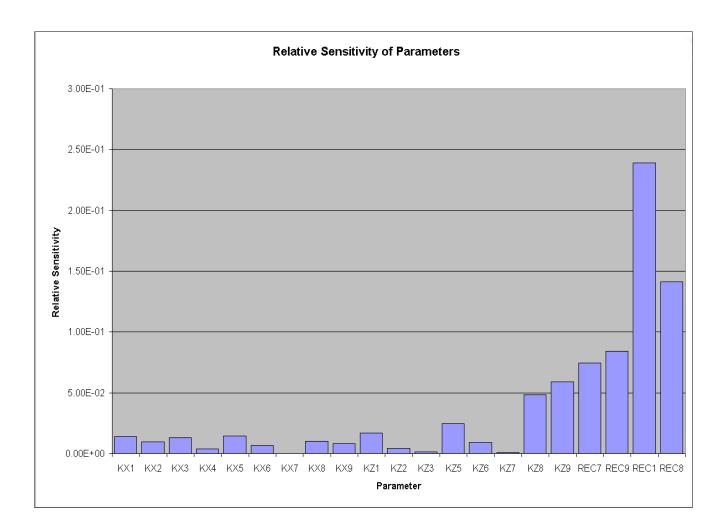
Figure 8


Recharge Zones in the Model

Note: Many wells penetrate multiple layers


Figure 9

Wells in Model


Plot of Observed and Simulated Observations

Contour Interval = 10 feet

Contours of Simulated Potentiometric Head (feet, above mean sea level)for Layer 4 (Mt. Simon-Hinckley Aquifer)

Relative Sensitivity of Model Calibration to Parameters

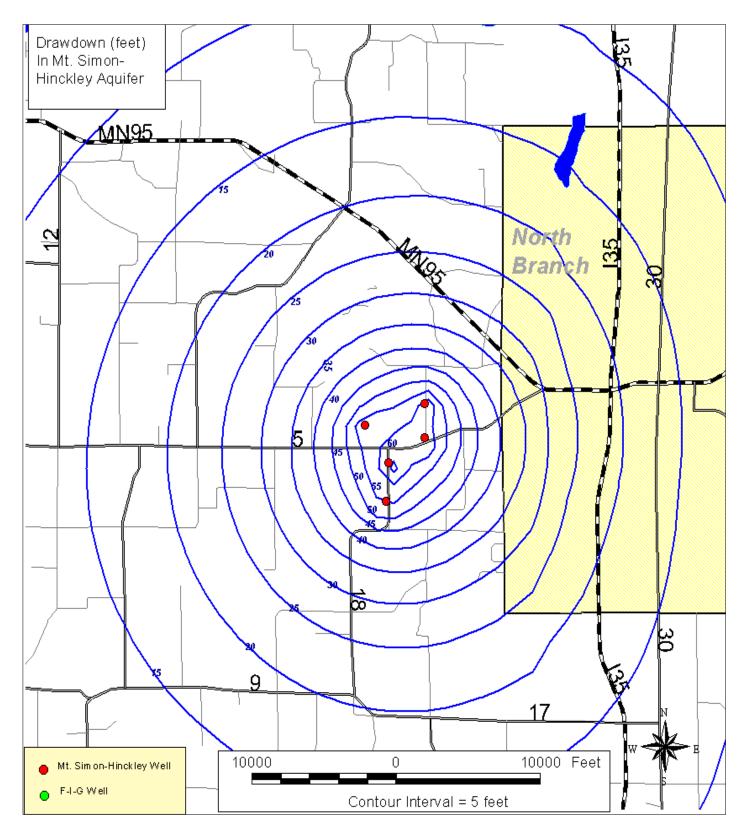


Figure 13

Well Alternative 1: Predicted Drawdown (feet) in Mt. Simon-Hinckley Aquifer

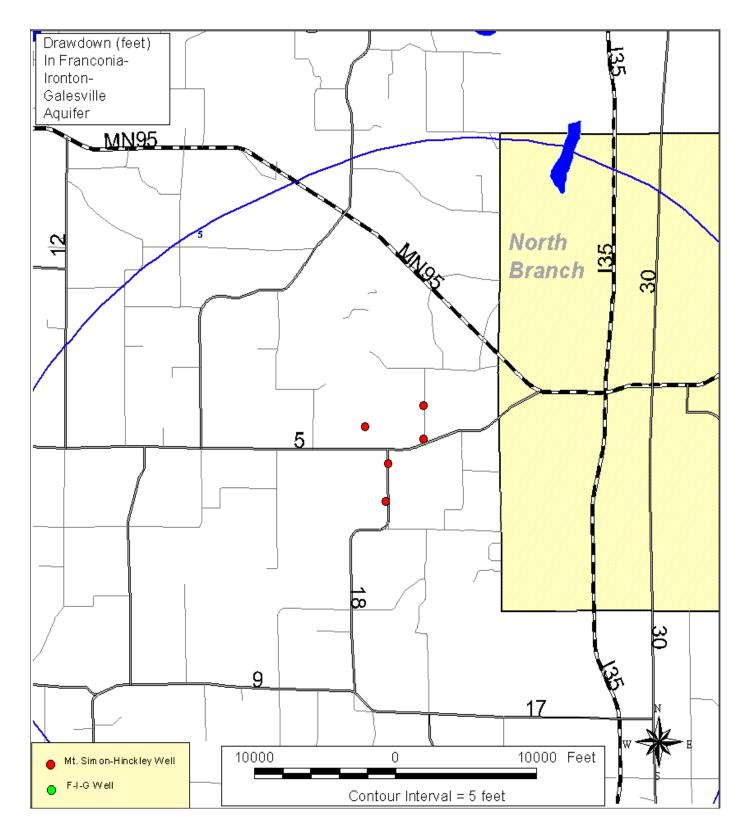
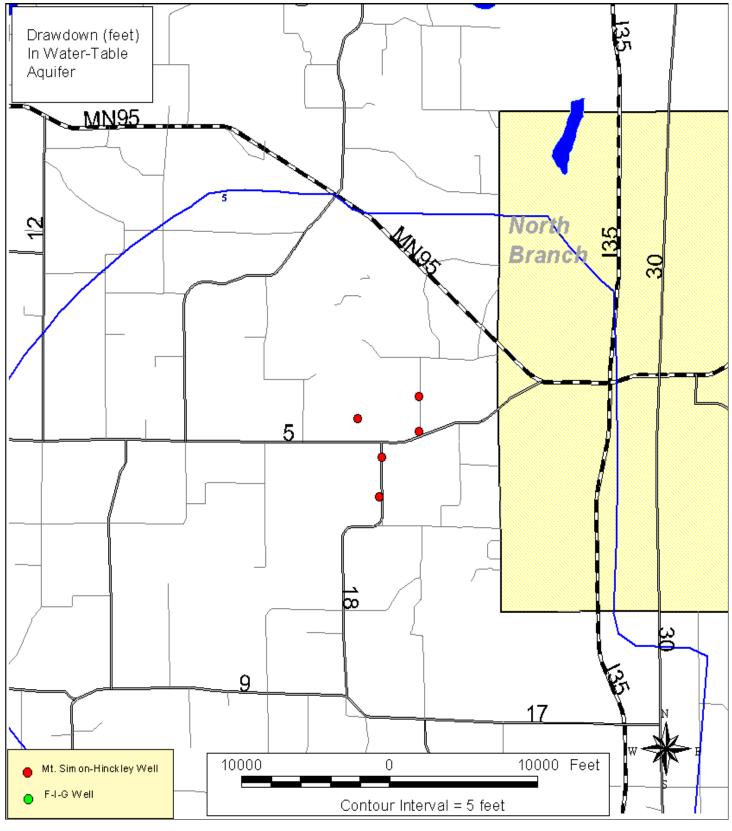



Figure 14

Well Alternative 1: Predicted Drawdown (feet) in Franconia-Ironton-Galesville Aquifer

Well Alternative 1: Predicted Drawdown (feet) in Water-Table Aquifer

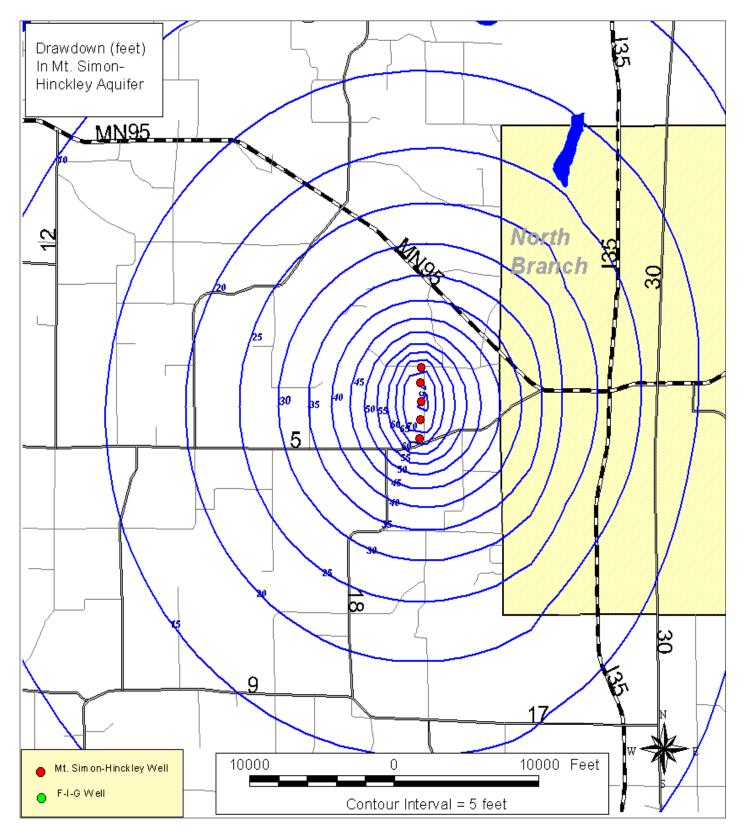


Figure 16

Well Alternative 2: Predicted Drawdown (feet) in Mt. Simon-Hinckley Aquifer

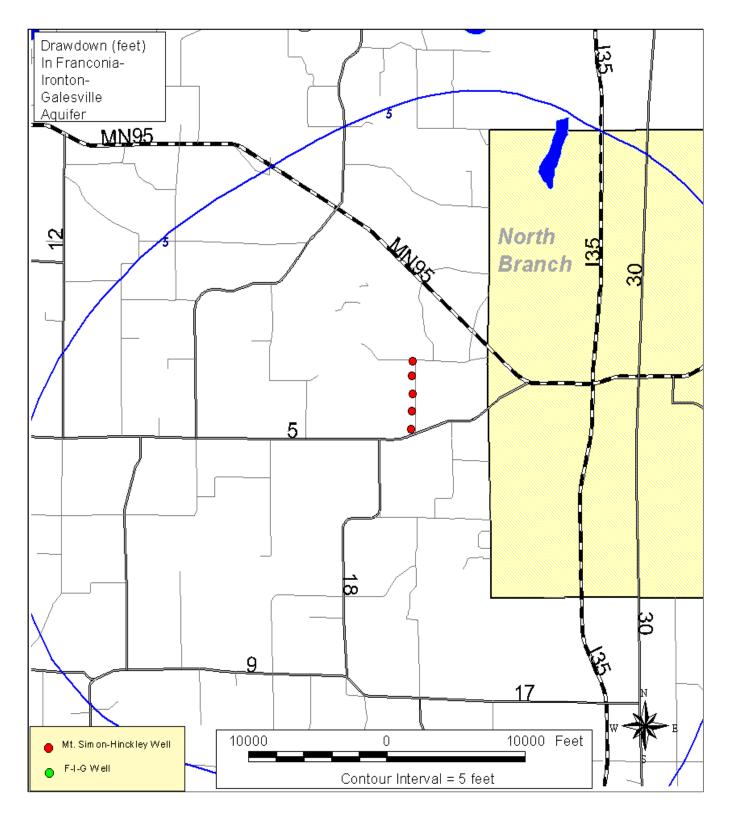


Figure 17

Well Alternative 2: Predicted Drawdown (feet) in Franconia-Ironton-Galesville Aquifer

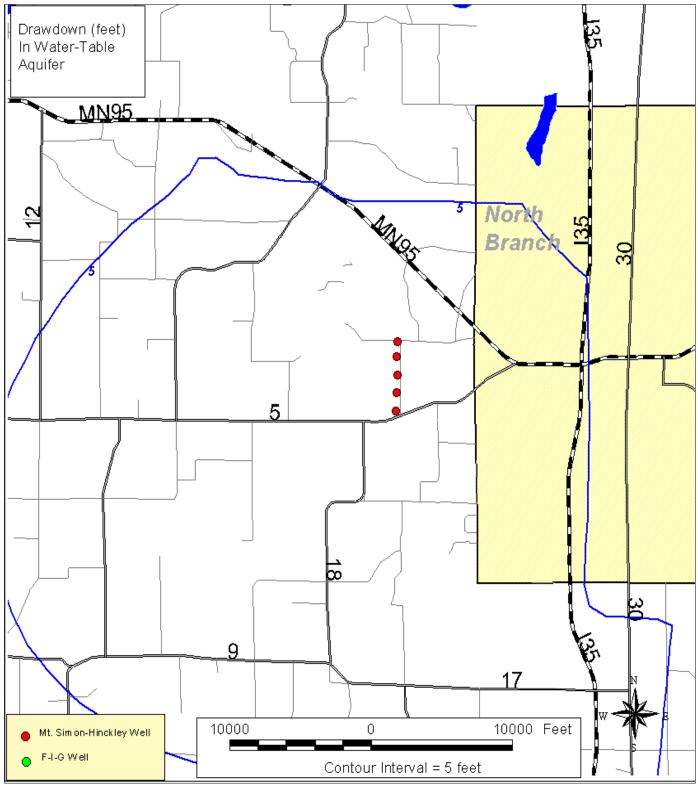


Figure 18

Well Alternative 2: Predicted Drawdown (feet) in Water-Table Aquifer

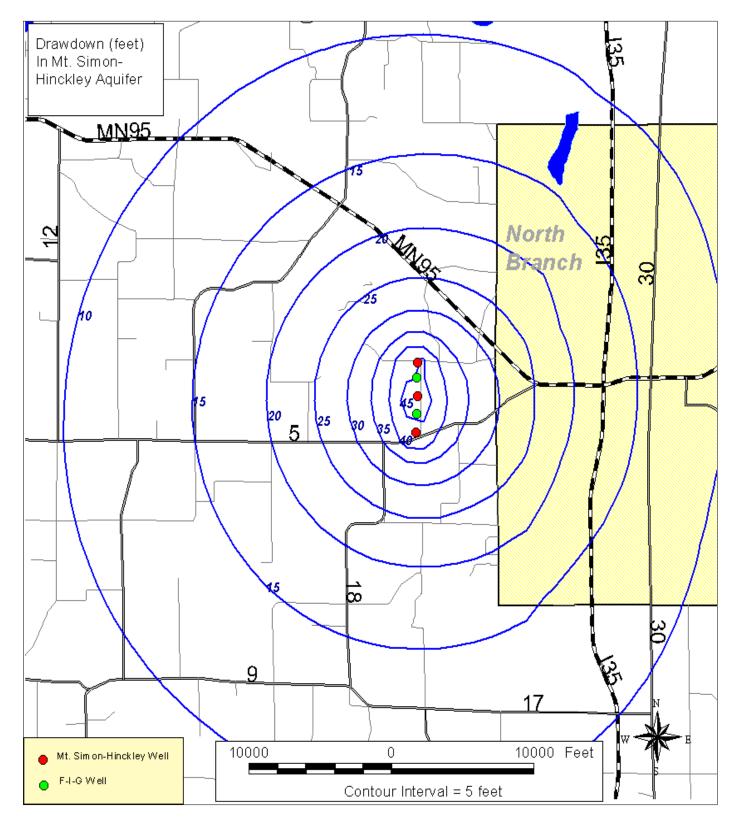


Figure 19

Well Alternative 3: Predicted Drawdown (feet) in Mt. Simon-Hinckley Aquifer

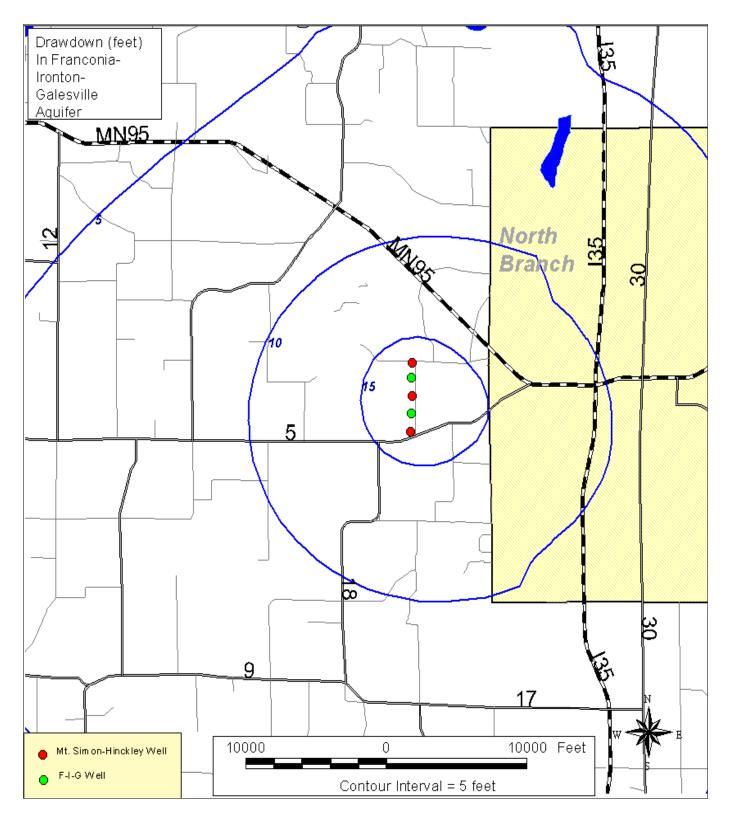


Figure 20

Well Alternative 3: Predicted Drawdown (feet) in Franconia-Ironton-Galesville Aquifer

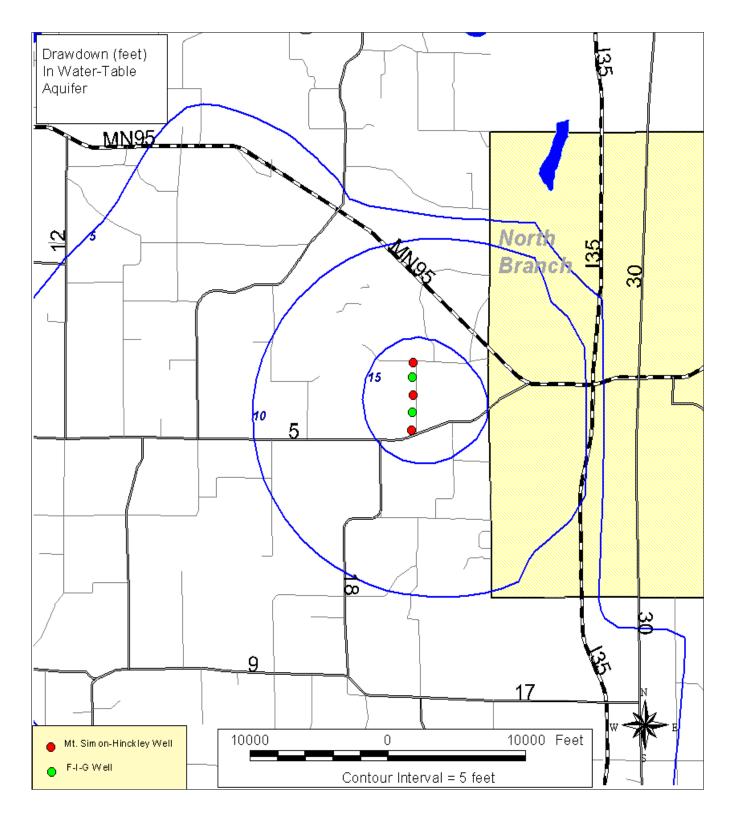
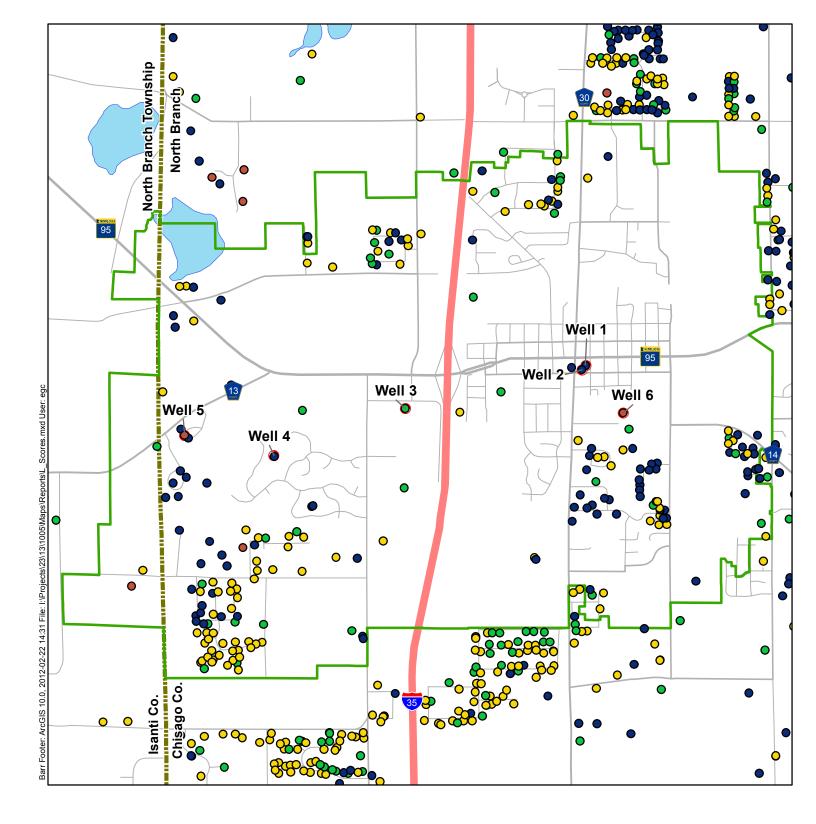



Figure 21

Well Alternative 3: Predicted Drawdown (feet) in Water-Table Aquifer

Appendix F

L-Score Map

Chisago County, MN

Appendix G

Groundwater Model Files and GIS Shapefiles (Electronic Format)